Deep learning model for two-fluid flows

解算器 离散化 计算流体力学 计算 计算机科学 多相流 有限元法 流体力学 联轴节(管道) 计算科学 人工智能 理论计算机科学 数学优化 物理 算法 机械工程 机械 数学 热力学 工程类 数学分析 程序设计语言
作者
George El Haber,Jonathan Viquerat,Aurélien Larcher,José Alves,Frédéric Costes,Etienne Perchat,Elie Hachem
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (2) 被引量:1
标识
DOI:10.1063/5.0134421
摘要

Various industries rely on numerical tools to simulate multiphase flows due to the wide occurrence of this phenomenon in nature, manufacturing processes, or the human body. However, the significant computation burden required for such simulations directs the research interest toward incorporating data-based approaches in the solution loop. Although these approaches returned significant results in various domains, incorporating them in the computational fluid dynamics (CFD) field is wrangled by their casting aside of the already known governing constitutional laws along with the natural incompatibility of various models with unstructured irregular discretization spaces. This work suggests a coupling framework, between a traditional finite element CFD solver and a deep learning model, for tackling multiphase fluid flows without migrating the benefits of physics-enriched traditional solvers. The tailored model architecture, along with the coupling framework, allows tackling the required problem with a dynamically adapted unstructured irregular triangular mesh, thus dodging the limitation of traditional convolution neural networks. Moreover, the various ingredients that allowed the model to simulate the complex and computation-demanding Navier–Stokes flow equation, such as relying on a sequential validation dataset while exposing the model training to a noise inherited from the quality of its inferring, along with the proper choice of model inputs, are highlighted and elaborated throughout this paper. To the authors' knowledge, this work is the first of its type to introduce a data-based graph-based approach for solving multiphase flow problems with a level-set interface capturing method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助westbobo采纳,获得10
2秒前
2秒前
3秒前
汉堡包应助JuinZhu采纳,获得30
3秒前
研友_8Y2DXL完成签到,获得积分10
5秒前
5秒前
6秒前
飞先生发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
Jonas发布了新的文献求助10
9秒前
可爱的函函应助协和_子鱼采纳,获得10
10秒前
10秒前
完美世界应助旋律采纳,获得10
10秒前
孙千关注了科研通微信公众号
11秒前
爆米花应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
wanci应助lulu采纳,获得30
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
12秒前
星空下的皮先生完成签到,获得积分10
14秒前
今后应助XL采纳,获得10
15秒前
科研通AI2S应助Dr-张显华采纳,获得10
15秒前
westbobo发布了新的文献求助10
16秒前
16秒前
17秒前
丘比特应助20221120550采纳,获得10
19秒前
1649488434完成签到,获得积分10
19秒前
所所应助lzs采纳,获得10
19秒前
19秒前
zhenzheng完成签到 ,获得积分10
21秒前
ni完成签到 ,获得积分10
21秒前
小白发布了新的文献求助10
21秒前
seedcui完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516067
求助须知:如何正确求助?哪些是违规求助? 3098247
关于积分的说明 9238827
捐赠科研通 2793272
什么是DOI,文献DOI怎么找? 1532930
邀请新用户注册赠送积分活动 712455
科研通“疑难数据库(出版商)”最低求助积分说明 707290