肿瘤微环境
阿霉素
癌症
药物输送
特拉尼司特
肿瘤进展
体内
癌症研究
医学
化疗
材料科学
纳米技术
免疫学
生物
内科学
生物技术
作者
Andreas Stylianou,Fotios Mpekris,Chrysovalantis Voutouri,Antonia Papoui,Anastasia Constantinidou,Evros Kitiris,Michalis Kailides,Triantafyllos Stylianopoulos
标识
DOI:10.1016/j.actbio.2022.10.021
摘要
Many tumors, such as types of sarcoma and breast cancer, stiffen as they grow in a host healthy tissue, while individual cancer cells are becoming softer. Tumor stiffening poses major pathophysiological barriers to the effective delivery of drugs and compromises treatment efficacy. It has been established that normalization of the mechanical properties of a tumor by targeting components of the tumor microenvironment (TME) enhances the delivery of anti-cancer agents and consequently the therapeutic outcome. Consequently, there is an urgent need for the development of biomarkers, which characterize the mechanical state of a particular tumor for the development of personalized treatments or for monitoring therapeutic strategies that target the TME. In this work, Atomic Force Microscopy (AFM) was used to assess human and murine nanomechanical properties from tumor biopsies. In the case of murine tumor models, the nanomechanical properties during tumor progression were measured and a TME normalization drug (tranilast) along with chemotherapy doxorubicin were employed in order to investigate whether AFM has the ability to capture changes in the nanomechanical properties of a tumor during treatment. The nanomechanical data were further correlated with ex vivo characterization of structural components of the TME. The results highlighted that nanomechanical properties alter during cancer progression and AFM measurements are sensitive enough to capture even small alterations during different types of treatments, namely normalization and chemotherapy. The identification of unique AFM-based nanomechanical properties can lead to the development of biomarkers for treatment prediction and monitoring. STATEMENT OF SIGNIFICANCE: Cancer progression is associated with vast remodeling of the tumor microenvironment resulting in changes in the mechanical properties of the tissue. Indeed, many tumors stiffen as they grow and this stiffening compromises treatment efficacy. As a result, a number of treatments target tumor microenvironment in order to normalize its mechanical properties. Consequently, there is an urgent need for the development of innovative tools that can assess the mechanical properties of a particular tumor and monitor tumor progression and treatment outcomes. This work highlights the use of atomic force microscopy (AFM) for assessing the elasticity spectrum of solid tumors at different stages and during treatment. This knowledge is essential for the development of AFM-based nanomechanical biomarkers for treatment prediction and monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI