已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A data-driven method for modeling human factors in maritime accidents by integrating DEMATEL and FCM based on HFACS: A case of ship collisions

工程类 海洋工程 计算机科学 航空学 系统工程
作者
Laihao Ma,Xiaoxue Ma,He Lan,Yang Liu,Wanyi Deng
出处
期刊:Ocean Engineering [Elsevier]
卷期号:266: 112699-112699 被引量:34
标识
DOI:10.1016/j.oceaneng.2022.112699
摘要

A data-driven method is proposed to measure the static and dynamic interrelations between human factors contributing to maritime accidents. The proposed method integrates the superiorities of the HFACS (Human Factors Analysis and Classification System), DEMATEL (Decision-Making Trial and Evaluation Laboratory), and FCM (Fuzzy Cognitive Map). First, a maritime accident scenario is defined based on 240 ship collision accident reports, then the human factors at different levels are identified and structured within the HFACS framework under the guidance of grounded theory. Second, the DEMATEL method is adopted to determine the causal relationship between human factors and the importance ranking of each factor based on historical accident statistics. The FCM model is developed in the end to realize dynamic prediction and diagnostic inference of human factors involved in maritime accidents. More objective and realistic results are presented by applying the proposed method without the necessity of expert judgment. The results show that “Lookout negligence”, “Poor safety management practice of the shipping company”, and “Failure to take effective collision avoidance actions promptly” are the top three important human factors, additionally, “Not familiar with COLREG” has the highest influencing degree and “Lookout negligence” has the highest influenced degree in the human factors network. • A novel method integrating HFACS, DEMATEL, and FCM is proposed to model human factors contributing to marine collisions. • A more detailed quantitative assessment of human factors is presented. • The dynamic effectiveness of safety countermeasures against human factors can be investigated and ranked.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
聪明的桐天才完成签到,获得积分10
2秒前
3秒前
勤奋的冰淇淋完成签到 ,获得积分10
4秒前
柒_l完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
Li发布了新的文献求助10
6秒前
耿舒婷完成签到,获得积分10
8秒前
fei完成签到 ,获得积分10
9秒前
9秒前
鹿小新完成签到 ,获得积分10
9秒前
gmchen发布了新的文献求助10
10秒前
敏感的钢铁侠完成签到,获得积分10
10秒前
欢呼妙彤发布了新的文献求助10
11秒前
Ren完成签到 ,获得积分10
11秒前
迷你的夜天完成签到 ,获得积分10
11秒前
fight发布了新的文献求助10
11秒前
江流有声完成签到 ,获得积分10
12秒前
科研小白完成签到 ,获得积分10
13秒前
英姑应助Li采纳,获得10
15秒前
静注氯化钾完成签到,获得积分10
16秒前
灵溪完成签到 ,获得积分10
17秒前
kjding发布了新的文献求助10
17秒前
Zn0103发布了新的文献求助10
18秒前
18秒前
JamesPei应助fight采纳,获得10
19秒前
平淡驳完成签到 ,获得积分10
19秒前
巫马炎彬完成签到,获得积分10
19秒前
23秒前
xsf发布了新的文献求助10
23秒前
Liyipu完成签到 ,获得积分10
24秒前
恰同学少年完成签到,获得积分10
24秒前
吕半鬼完成签到,获得积分0
24秒前
圆圈完成签到,获得积分10
24秒前
26秒前
诺诺完成签到 ,获得积分10
26秒前
kjding完成签到,获得积分10
27秒前
Kevin发布了新的文献求助10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248609
求助须知:如何正确求助?哪些是违规求助? 2892063
关于积分的说明 8269674
捐赠科研通 2560135
什么是DOI,文献DOI怎么找? 1388854
科研通“疑难数据库(出版商)”最低求助积分说明 650926
邀请新用户注册赠送积分活动 627798