Evaluation of a Self-Supervised Machine Learning Method for Screening of Particulate Samples: A Case Study in Liquid Formulations

人工智能 基本事实 卷积神经网络 计算机科学 模式识别(心理学) 嵌入 图像(数学) 关系(数据库) 机器学习 人工神经网络 粒子(生态学) 监督学习 数据挖掘 海洋学 地质学
作者
Hossein Salami,Shubing Wang,Daniel Skomski
出处
期刊:Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:112 (3): 771-778 被引量:10
标识
DOI:10.1016/j.xphs.2022.10.010
摘要

Imaging is commonly used as a characterization method in the pharmaceuticals industry, including for quantifying subvisible particles in solid and liquid formulations. Extracting information beyond particle size, such as classifying morphological subpopulations, requires some type of image analysis method. Suggested methods to classify particles have been based on pre-determined morphological features or use supervised training of convolutional neural networks to learn image representations in relation to ground truth labels. Complications arising from highly complex morphologies, unforeseen classes, and time-consuming preparation of ground truth labels, are some of the challenges faced by these methods. In this work, we evaluate the application of a self-supervised contrastive learning method in studying particle images from therapeutic solutions. Unlike with supervised training, this approach does not require ground truth labels and representations are learned by comparing particle images and their augmentations. This method provides a fast and easily implementable tool of coarse screening for morphological attribute assessment. Furthermore, our analysis shows that in cases with relatively balanced datasets, a small subset of an image dataset is sufficient to train a convolutional neural network encoder capable of extracting useful image representations. It is also demonstrated that particle classes typically observed in protein solutions administered by pre-filled syringes emerge as separated clusters in the encoder's embedding space, facilitating performing tasks such as training weakly-supervised classifiers or identifying the presence of new subpopulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚风完成签到 ,获得积分10
刚刚
韩小寒qqq完成签到,获得积分10
1秒前
小笼包完成签到,获得积分10
1秒前
WK-kin发布了新的文献求助30
1秒前
2秒前
嘉人完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
99完成签到,获得积分10
2秒前
科研通AI2S应助LeonZhang采纳,获得10
3秒前
飞鸟完成签到,获得积分10
4秒前
糖糖谈糖糖完成签到,获得积分10
4秒前
6秒前
sxqt完成签到,获得积分10
6秒前
西瓜橙子完成签到,获得积分10
7秒前
Rye发布了新的文献求助10
7秒前
cola完成签到 ,获得积分10
7秒前
完美世界应助琉琉硫采纳,获得10
8秒前
烦恼都走开完成签到,获得积分10
9秒前
dcc完成签到,获得积分10
9秒前
9秒前
全一斩完成签到,获得积分10
9秒前
KUYAA完成签到 ,获得积分10
9秒前
wxx完成签到,获得积分10
9秒前
小包子发布了新的文献求助20
10秒前
10秒前
怎么睡不醒完成签到 ,获得积分10
11秒前
11秒前
iceeer完成签到,获得积分10
11秒前
王文静应助自由的机器猫采纳,获得10
11秒前
xinyue发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
再吃一颗苹果完成签到,获得积分10
13秒前
一目完成签到,获得积分20
13秒前
柳煜城完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
Sindy完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661303
求助须知:如何正确求助?哪些是违规求助? 3222367
关于积分的说明 9745047
捐赠科研通 2931980
什么是DOI,文献DOI怎么找? 1605350
邀请新用户注册赠送积分活动 757854
科研通“疑难数据库(出版商)”最低求助积分说明 734569