Optimization of water quality index models using machine learning approaches

层次分析法 水质 熵(时间箭头) 数学 人工智能 可靠性(半导体) 质量(理念) 计算机科学 统计 机器学习 数据挖掘 运筹学 生态学 功率(物理) 哲学 物理 认识论 量子力学 生物
作者
Fei Ding,Wenjie Zhang,Shaohua Cao,Shilong Hao,Liangyao Chen,Xin Xie,Wenpan Li,Mingcen Jiang
出处
期刊:Water Research [Elsevier]
卷期号:243: 120337-120337 被引量:33
标识
DOI:10.1016/j.watres.2023.120337
摘要

To optimize the water quality index (WQI) assessment model, this study upgraded the parameter weight values and aggregation functions. We determined the combined weights based on machine learning and game theory to improve the accuracy of the models, and proposed new aggregation functions to reduce the uncertainty of the model. A new water quality assessment system was established, and took the Chaobai River Basin as a case study. To optimize the weight, two combined weights were established based on game theory. The weight CWAE was combined by the Analytic Hierarchy Process (AHP) and Entropy Weight Method (EWM). The weight CWAL was combined by AHP and machine learning (LightGBM). CWAL was judged to be an optimal composite weight by comparing the coefficient of variation (CV) values and the Kaiser-Meyer-Olkin (KMO) extracted values. To reduce the uncertainty of the model, we proposed two aggregation functions, the Sinusoidal Weighted Mean (SWM) and the Log-weighted Quadratic Mean (LQM). The three water quality assessment models (WQIS, WQIL and WQIW) were established based on the optimal weights besides. All three models had good reliability. Both WQIS and WQIW models had low eclipsing problems (25.49% and 18.63%). The accuracy of the models was ranked as WQIS > WQIW > WQIL. The uncertainty of WQIs (0.000) in assessing poor water quality was low, and so was WQIW (0.259) in assessing good water quality. Overall, the WQIS model was recommended for assessing poor water quality and the WQIW model was recommended for assessing good water quality. The assessment results of WQIS showed that the Chaobai River Basin was "slightly polluted", and the water quality upstream was better than that downstream. TN was the main pollutant in the basin, and there was slight pollution with CODMn, CODCr, BOD5, etc. There was little metal contamination, only a few months exceeded Class I. The model established in this study can provide a reference for the same type work of water quality assessment. The assessment results can provide a scientific basis for the protection of the regional water environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的小熊猫完成签到 ,获得积分20
1秒前
1秒前
WCX关闭了WCX文献求助
1秒前
3秒前
ured发布了新的文献求助10
4秒前
穆紫应助liuHX采纳,获得10
4秒前
搜集达人应助fogsea采纳,获得10
5秒前
NexusExplorer应助洁面乳采纳,获得10
6秒前
白白白发布了新的文献求助10
6秒前
xiaobei完成签到,获得积分10
6秒前
笨笨的仙人掌完成签到,获得积分10
8秒前
8秒前
FashionBoy应助咕咕采纳,获得10
8秒前
8秒前
玖念完成签到,获得积分10
9秒前
脑洞疼应助xiaobei采纳,获得20
9秒前
10秒前
11秒前
11秒前
13秒前
甜蜜的阳光完成签到 ,获得积分10
13秒前
完美世界应助haowu采纳,获得10
13秒前
科研通AI2S应助haowu采纳,获得10
14秒前
科研通AI2S应助haowu采纳,获得10
14秒前
科研通AI2S应助haowu采纳,获得10
14秒前
搜集达人应助haowu采纳,获得10
14秒前
14秒前
15秒前
15秒前
隐形曼青应助哈哈哈采纳,获得10
16秒前
skmksd发布了新的文献求助10
16秒前
poke发布了新的文献求助10
16秒前
Enuo完成签到,获得积分10
18秒前
互助遵法尚德应助点点点采纳,获得10
19秒前
wqc2060完成签到,获得积分10
20秒前
彭于晏应助nikola采纳,获得10
21秒前
赫赫发布了新的文献求助10
23秒前
dylaner完成签到,获得积分10
25秒前
不配.应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323