Image Quality and Lesion Detectability of Pancreatic Phase Thin-Slice Computed Tomography Images With a Deep Learning–Based Reconstruction Algorithm

迭代重建 医学 重建算法 图像质量 人工智能 断层摄影术 算法 氡变换 对比噪声比 核医学 图像噪声 放射科 计算机科学 图像(数学)
作者
Atsushi Nakamoto,Hiromitsu Onishi,Takahiro Tsuboyama,Hideyuki Fukui,Takashi Ota,K. Ogawa,Keigo Yano,Kengo Kiso,Toru Honda,Mitsuaki Tatsumi,Noriyuki Tomiyama
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (5): 698-703 被引量:2
标识
DOI:10.1097/rct.0000000000001485
摘要

Objective To evaluate the image quality and lesion detectability of pancreatic phase thin-slice computed tomography (CT) images reconstructed with a deep learning–based reconstruction (DLR) algorithm compared with filtered-back projection (FBP) and hybrid iterative reconstruction (IR) algorithms. Methods Fifty-three patients who underwent dynamic contrast-enhanced CT including pancreatic phase were enrolled in this retrospective study. Pancreatic phase thin-slice (0.625 mm) images were reconstructed with each FBP, hybrid IR, and DLR. Objective image quality and signal-to-noise ratio of the pancreatic parenchyma, and contrast-to-noise ratio of pancreatic lesions were compared between the 3 reconstruction algorithms. Two radiologists independently assessed the image quality of all images. The diagnostic performance for the detection of pancreatic lesions was compared among the reconstruction algorithms using jackknife alternative free-response receiver operating characteristic analysis. Results Deep learning–based reconstruction resulted in significantly lower image noise and higher signal-to-noise ratio and contrast-to-noise ratio than hybrid IR and FBP ( P < 0.001). Deep learning–based reconstruction also yielded significantly higher visual scores than hybrid IR and FBP ( P < 0.01). The diagnostic performance of DLR for detecting pancreatic lesions was highest for both readers, although a significant difference was found only between DLR and FBP in one reader ( P = 0.02). Conclusions Deep learning–based reconstruction showed improved objective and subjective image quality of pancreatic phase thin-slice CT relative to other reconstruction algorithms and has potential for improving lesion detectability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助2182265539采纳,获得10
1秒前
1秒前
大模型应助yushanriqing采纳,获得10
1秒前
Alex发布了新的文献求助200
3秒前
来路遥迢发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助30
5秒前
Shun完成签到 ,获得积分10
6秒前
等待靖儿发布了新的文献求助10
6秒前
桂d完成签到,获得积分20
7秒前
豪杰完成签到,获得积分10
7秒前
Labubuz完成签到,获得积分10
8秒前
Jason完成签到,获得积分10
8秒前
晶婷完成签到,获得积分10
8秒前
woodenfish发布了新的文献求助10
8秒前
邵邵完成签到,获得积分10
10秒前
闪闪蜜粉完成签到 ,获得积分10
10秒前
10秒前
酷波er应助与你采纳,获得10
11秒前
YuLu完成签到 ,获得积分10
13秒前
Ky_Mac应助科研通管家采纳,获得30
13秒前
辛勤月饼完成签到,获得积分10
13秒前
13秒前
13秒前
打打应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
asdfzxcv应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
大个应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
打打应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
lcc应助科研通管家采纳,获得10
14秒前
14秒前
Ky_Mac应助科研通管家采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709