Image Quality and Lesion Detectability of Pancreatic Phase Thin-Slice Computed Tomography Images With a Deep Learning–Based Reconstruction Algorithm

迭代重建 医学 重建算法 图像质量 人工智能 断层摄影术 算法 氡变换 对比噪声比 核医学 图像噪声 放射科 计算机科学 图像(数学)
作者
Atsushi Nakamoto,Hiromitsu Onishi,Takahiro Tsuboyama,Hideyuki Fukui,Takashi Ota,K. Ogawa,Keigo Yano,Kengo Kiso,Toru Honda,Mitsuaki Tatsumi,Noriyuki Tomiyama
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (5): 698-703 被引量:2
标识
DOI:10.1097/rct.0000000000001485
摘要

Objective To evaluate the image quality and lesion detectability of pancreatic phase thin-slice computed tomography (CT) images reconstructed with a deep learning–based reconstruction (DLR) algorithm compared with filtered-back projection (FBP) and hybrid iterative reconstruction (IR) algorithms. Methods Fifty-three patients who underwent dynamic contrast-enhanced CT including pancreatic phase were enrolled in this retrospective study. Pancreatic phase thin-slice (0.625 mm) images were reconstructed with each FBP, hybrid IR, and DLR. Objective image quality and signal-to-noise ratio of the pancreatic parenchyma, and contrast-to-noise ratio of pancreatic lesions were compared between the 3 reconstruction algorithms. Two radiologists independently assessed the image quality of all images. The diagnostic performance for the detection of pancreatic lesions was compared among the reconstruction algorithms using jackknife alternative free-response receiver operating characteristic analysis. Results Deep learning–based reconstruction resulted in significantly lower image noise and higher signal-to-noise ratio and contrast-to-noise ratio than hybrid IR and FBP ( P < 0.001). Deep learning–based reconstruction also yielded significantly higher visual scores than hybrid IR and FBP ( P < 0.01). The diagnostic performance of DLR for detecting pancreatic lesions was highest for both readers, although a significant difference was found only between DLR and FBP in one reader ( P = 0.02). Conclusions Deep learning–based reconstruction showed improved objective and subjective image quality of pancreatic phase thin-slice CT relative to other reconstruction algorithms and has potential for improving lesion detectability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助anxin采纳,获得10
1秒前
qiuxin完成签到,获得积分10
1秒前
烦死了完成签到 ,获得积分0
1秒前
2秒前
小猫爬楼梯完成签到,获得积分10
2秒前
wanci应助SU采纳,获得10
4秒前
4秒前
小美发布了新的文献求助10
6秒前
神勇从波发布了新的文献求助20
8秒前
roomvinli发布了新的文献求助10
8秒前
ppc524发布了新的文献求助10
8秒前
本望柒山路完成签到,获得积分10
8秒前
无情胡萝卜完成签到,获得积分10
9秒前
Hello应助高大大雁采纳,获得10
10秒前
哈哈王子完成签到,获得积分10
11秒前
虚心契完成签到,获得积分10
13秒前
13秒前
羊毛毛衣完成签到,获得积分10
14秒前
ljy2015发布了新的文献求助10
14秒前
单纯乘风完成签到 ,获得积分10
14秒前
莫愁完成签到 ,获得积分10
16秒前
彳亍1117应助小美采纳,获得10
17秒前
SU发布了新的文献求助10
19秒前
俭朴新之完成签到 ,获得积分10
21秒前
fei完成签到,获得积分20
21秒前
22秒前
25秒前
BareBear完成签到,获得积分10
26秒前
ljy2015完成签到,获得积分10
26秒前
欢喜的元霜完成签到,获得积分20
27秒前
Cissy完成签到 ,获得积分10
28秒前
Orange应助xixi采纳,获得10
29秒前
31秒前
33秒前
33秒前
大气新烟完成签到,获得积分10
34秒前
35秒前
mingzhu完成签到,获得积分10
35秒前
科目三应助西西歪采纳,获得30
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825