Image Quality and Lesion Detectability of Pancreatic Phase Thin-Slice Computed Tomography Images With a Deep Learning–Based Reconstruction Algorithm

迭代重建 医学 重建算法 图像质量 人工智能 断层摄影术 算法 氡变换 对比噪声比 核医学 图像噪声 放射科 计算机科学 图像(数学)
作者
Atsushi Nakamoto,Hiromitsu Onishi,Takahiro Tsuboyama,Hideyuki Fukui,Takashi Ota,K. Ogawa,Keigo Yano,Kengo Kiso,Toru Honda,Mitsuaki Tatsumi,Noriyuki Tomiyama
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (5): 698-703 被引量:2
标识
DOI:10.1097/rct.0000000000001485
摘要

Objective To evaluate the image quality and lesion detectability of pancreatic phase thin-slice computed tomography (CT) images reconstructed with a deep learning–based reconstruction (DLR) algorithm compared with filtered-back projection (FBP) and hybrid iterative reconstruction (IR) algorithms. Methods Fifty-three patients who underwent dynamic contrast-enhanced CT including pancreatic phase were enrolled in this retrospective study. Pancreatic phase thin-slice (0.625 mm) images were reconstructed with each FBP, hybrid IR, and DLR. Objective image quality and signal-to-noise ratio of the pancreatic parenchyma, and contrast-to-noise ratio of pancreatic lesions were compared between the 3 reconstruction algorithms. Two radiologists independently assessed the image quality of all images. The diagnostic performance for the detection of pancreatic lesions was compared among the reconstruction algorithms using jackknife alternative free-response receiver operating characteristic analysis. Results Deep learning–based reconstruction resulted in significantly lower image noise and higher signal-to-noise ratio and contrast-to-noise ratio than hybrid IR and FBP ( P < 0.001). Deep learning–based reconstruction also yielded significantly higher visual scores than hybrid IR and FBP ( P < 0.01). The diagnostic performance of DLR for detecting pancreatic lesions was highest for both readers, although a significant difference was found only between DLR and FBP in one reader ( P = 0.02). Conclusions Deep learning–based reconstruction showed improved objective and subjective image quality of pancreatic phase thin-slice CT relative to other reconstruction algorithms and has potential for improving lesion detectability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sheishei完成签到,获得积分10
刚刚
老福贵儿应助niko采纳,获得10
1秒前
1秒前
诚心的大白菜真实的钥匙完成签到 ,获得积分10
2秒前
景笑天完成签到,获得积分10
2秒前
2秒前
3秒前
李李发布了新的文献求助10
3秒前
sheishei发布了新的文献求助10
4秒前
合适冰棍发布了新的文献求助10
4秒前
耶耶完成签到,获得积分10
4秒前
4秒前
优美画笔发布了新的文献求助10
5秒前
6秒前
pifang2009发布了新的文献求助10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
CD发布了新的文献求助10
9秒前
紫色茄子完成签到,获得积分10
9秒前
合适冰棍完成签到,获得积分10
10秒前
luoshikun发布了新的文献求助10
11秒前
慕青应助高永康采纳,获得10
11秒前
希望天下0贩的0应助E10100采纳,获得10
11秒前
猫吃蘑菇完成签到,获得积分10
11秒前
mcxkjnv完成签到,获得积分10
11秒前
CipherSage应助冷艳水壶采纳,获得10
12秒前
13秒前
woshigantang发布了新的文献求助10
13秒前
甜豆包完成签到 ,获得积分10
14秒前
14秒前
婉孝完成签到,获得积分10
15秒前
栀恩关注了科研通微信公众号
15秒前
科目三应助冷艳水壶采纳,获得10
16秒前
hff完成签到,获得积分20
17秒前
热情友桃发布了新的文献求助10
17秒前
醉山茶发布了新的文献求助10
17秒前
17秒前
紫色茄子发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492