Image Quality and Lesion Detectability of Pancreatic Phase Thin-Slice Computed Tomography Images With a Deep Learning–Based Reconstruction Algorithm

迭代重建 医学 重建算法 图像质量 人工智能 断层摄影术 算法 氡变换 对比噪声比 核医学 图像噪声 放射科 计算机科学 图像(数学)
作者
Atsushi Nakamoto,Hiromitsu Onishi,Takahiro Tsuboyama,Hideyuki Fukui,Takashi Ota,K. Ogawa,Keigo Yano,Kengo Kiso,Toru Honda,Mitsuaki Tatsumi,Noriyuki Tomiyama
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (5): 698-703 被引量:2
标识
DOI:10.1097/rct.0000000000001485
摘要

Objective To evaluate the image quality and lesion detectability of pancreatic phase thin-slice computed tomography (CT) images reconstructed with a deep learning–based reconstruction (DLR) algorithm compared with filtered-back projection (FBP) and hybrid iterative reconstruction (IR) algorithms. Methods Fifty-three patients who underwent dynamic contrast-enhanced CT including pancreatic phase were enrolled in this retrospective study. Pancreatic phase thin-slice (0.625 mm) images were reconstructed with each FBP, hybrid IR, and DLR. Objective image quality and signal-to-noise ratio of the pancreatic parenchyma, and contrast-to-noise ratio of pancreatic lesions were compared between the 3 reconstruction algorithms. Two radiologists independently assessed the image quality of all images. The diagnostic performance for the detection of pancreatic lesions was compared among the reconstruction algorithms using jackknife alternative free-response receiver operating characteristic analysis. Results Deep learning–based reconstruction resulted in significantly lower image noise and higher signal-to-noise ratio and contrast-to-noise ratio than hybrid IR and FBP ( P < 0.001). Deep learning–based reconstruction also yielded significantly higher visual scores than hybrid IR and FBP ( P < 0.01). The diagnostic performance of DLR for detecting pancreatic lesions was highest for both readers, although a significant difference was found only between DLR and FBP in one reader ( P = 0.02). Conclusions Deep learning–based reconstruction showed improved objective and subjective image quality of pancreatic phase thin-slice CT relative to other reconstruction algorithms and has potential for improving lesion detectability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助Unpaid采纳,获得10
1秒前
1秒前
奋斗的绝悟完成签到,获得积分10
2秒前
情怀应助Painkiller_采纳,获得10
3秒前
元骏发布了新的文献求助10
3秒前
元骏发布了新的文献求助10
3秒前
元骏发布了新的文献求助10
3秒前
元骏发布了新的文献求助10
3秒前
元骏发布了新的文献求助10
3秒前
元骏发布了新的文献求助10
3秒前
元骏发布了新的文献求助10
3秒前
元骏发布了新的文献求助10
3秒前
元骏发布了新的文献求助10
3秒前
元骏发布了新的文献求助10
3秒前
元骏发布了新的文献求助10
3秒前
哒丝萌德完成签到,获得积分10
3秒前
哲欣完成签到,获得积分10
8秒前
无花果应助123456采纳,获得10
9秒前
10秒前
淡定猎豹完成签到,获得积分20
10秒前
11秒前
changping应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
lalala应助科研通管家采纳,获得10
12秒前
lasalu应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得100
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
13秒前
lalala应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
chenqiumu应助科研通管家采纳,获得30
13秒前
淡定猎豹发布了新的文献求助10
13秒前
852应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400