清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Image Quality and Lesion Detectability of Pancreatic Phase Thin-Slice Computed Tomography Images With a Deep Learning–Based Reconstruction Algorithm

迭代重建 医学 重建算法 图像质量 人工智能 断层摄影术 算法 氡变换 对比噪声比 核医学 图像噪声 放射科 计算机科学 图像(数学)
作者
Atsushi Nakamoto,Hiromitsu Onishi,Takahiro Tsuboyama,Hideyuki Fukui,Takashi Ota,K. Ogawa,Keigo Yano,Kengo Kiso,Toru Honda,Mitsuaki Tatsumi,Noriyuki Tomiyama
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (5): 698-703 被引量:2
标识
DOI:10.1097/rct.0000000000001485
摘要

Objective To evaluate the image quality and lesion detectability of pancreatic phase thin-slice computed tomography (CT) images reconstructed with a deep learning–based reconstruction (DLR) algorithm compared with filtered-back projection (FBP) and hybrid iterative reconstruction (IR) algorithms. Methods Fifty-three patients who underwent dynamic contrast-enhanced CT including pancreatic phase were enrolled in this retrospective study. Pancreatic phase thin-slice (0.625 mm) images were reconstructed with each FBP, hybrid IR, and DLR. Objective image quality and signal-to-noise ratio of the pancreatic parenchyma, and contrast-to-noise ratio of pancreatic lesions were compared between the 3 reconstruction algorithms. Two radiologists independently assessed the image quality of all images. The diagnostic performance for the detection of pancreatic lesions was compared among the reconstruction algorithms using jackknife alternative free-response receiver operating characteristic analysis. Results Deep learning–based reconstruction resulted in significantly lower image noise and higher signal-to-noise ratio and contrast-to-noise ratio than hybrid IR and FBP ( P < 0.001). Deep learning–based reconstruction also yielded significantly higher visual scores than hybrid IR and FBP ( P < 0.01). The diagnostic performance of DLR for detecting pancreatic lesions was highest for both readers, although a significant difference was found only between DLR and FBP in one reader ( P = 0.02). Conclusions Deep learning–based reconstruction showed improved objective and subjective image quality of pancreatic phase thin-slice CT relative to other reconstruction algorithms and has potential for improving lesion detectability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zcl完成签到 ,获得积分10
8秒前
苏梗完成签到 ,获得积分10
47秒前
55秒前
59秒前
小蘑菇应助aayy采纳,获得30
1分钟前
jie完成签到 ,获得积分10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
轨迹应助ceeray23采纳,获得20
1分钟前
2分钟前
乌迪尔应助ceeray23采纳,获得200
2分钟前
2分钟前
3分钟前
3分钟前
自然亦凝完成签到,获得积分10
3分钟前
xiaohu完成签到 ,获得积分10
4分钟前
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
闲人颦儿完成签到,获得积分0
5分钟前
感动的小甜瓜给感动的小甜瓜的求助进行了留言
6分钟前
6分钟前
方白秋完成签到,获得积分0
6分钟前
Hello应助00采纳,获得10
6分钟前
狂野的含烟完成签到 ,获得积分10
7分钟前
MchemG应助科研通管家采纳,获得10
7分钟前
LeoBigman完成签到 ,获得积分10
8分钟前
8分钟前
Eileen完成签到 ,获得积分0
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
00发布了新的文献求助10
8分钟前
freebird完成签到,获得积分10
8分钟前
CodeCraft应助iman采纳,获得10
8分钟前
量子星尘发布了新的文献求助10
9分钟前
科研通AI6应助科研通管家采纳,获得10
9分钟前
MchemG应助科研通管家采纳,获得30
9分钟前
tutu完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681806
求助须知:如何正确求助?哪些是违规求助? 5013763
关于积分的说明 15176137
捐赠科研通 4841302
什么是DOI,文献DOI怎么找? 2595086
邀请新用户注册赠送积分活动 1548130
关于科研通互助平台的介绍 1506143