Comparison of UV, visible and near-infrared, and mid-infrared spectrometers to estimate maize and sorghum leaf nutrients using dry-intact and ground leaves

营养物 高粱 分光计 微量营养素 偏最小二乘回归 干物质 红外线的 园艺 化学 扎梅斯 农学 植物 数学 生物 物理 光学 统计 有机化学 量子力学
作者
F.H.C.A. Silva,Nuwan K. Wijewardane,Raju Bheemanahalli,K. Raja Reddy,Xin Zhang,Ranadheer Reddy Vennam
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108001-108001 被引量:16
标识
DOI:10.1016/j.compag.2023.108001
摘要

Spectroscopy has been explored as a potential tool to estimate various nutrients in plant tissues rapidly and nondestructively. Compared to visible and near-infrared regions, ultraviolet and mid-infrared (MIR) regions have been sporadically investigated for predicting various nutrients in plant leaf tissues. Sample grinding is one of the tedious steps recommended for MIR spectroscopy. Still, dry-intact samples may potentially estimate leaf nutrients eliminating the need for grinding, which could reduce the cost and time of analysis. In light of this, five different spectrometers (four portable and one laboratory-only) were compared to estimate eleven macro and micronutrients (N, P, K, Ca, Mg, Zn, S, Cu, B, Fe, Mn) using dry-intact and ground leaf spectra. A total of 154 maize (Zea mays L.) and 308 sorghum (Sorghum bicolor L.) leaves from different genotypes subjected to different abiotic stress treatments, were collected and used to acquire spectral data. Partial least squares regression was used to calibrate models using 70% of the data and validate on the remaining data (30%). Five macronutrients (N, P, K, S and Mg) and two micronutrients (Mn and Fe) were predicted accurately (R2 > 0.6), and the ground scan accuracies were superior to the dry-intact scans for all the spectrometers used. Some of the critical elements (N, P, Mg, Mn, Fe and Zn) were successfully predicted (R2 = 0.6–0.89) with dry intact scans as well. Overall, the results suggested that portable spectrometers can accurately estimate leaf nutrients using ground or dry-intact leaves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不周山修猫完成签到,获得积分10
刚刚
1秒前
2秒前
小熊饼干完成签到,获得积分10
2秒前
2秒前
张钊于发布了新的文献求助10
2秒前
Lavender完成签到,获得积分10
3秒前
王嘉尔完成签到,获得积分10
3秒前
3秒前
REBECCA完成签到 ,获得积分10
5秒前
Owen应助Guko采纳,获得10
5秒前
莉丽发布了新的文献求助10
6秒前
6秒前
6秒前
打打应助玄易采纳,获得10
7秒前
7秒前
8秒前
充电宝应助Lavender采纳,获得10
8秒前
星空发布了新的文献求助10
8秒前
Owen应助fddd采纳,获得10
8秒前
8秒前
ZAJ发布了新的文献求助10
9秒前
所所应助King采纳,获得10
9秒前
10秒前
浮游应助刘老哥6采纳,获得10
11秒前
11秒前
TS完成签到,获得积分10
11秒前
max发布了新的文献求助10
12秒前
隐形曼青应助晓竹采纳,获得10
12秒前
Arrebol完成签到,获得积分10
13秒前
充电宝应助boging采纳,获得10
13秒前
英俊的铭应助JiaY采纳,获得10
13秒前
14秒前
霸气的半烟完成签到,获得积分20
15秒前
稳重的皮皮虾关注了科研通微信公众号
15秒前
ZAJ完成签到,获得积分10
15秒前
自己的样子好好看完成签到,获得积分10
16秒前
思源应助zj采纳,获得10
16秒前
16秒前
wanci应助一二三四五采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465317
求助须知:如何正确求助?哪些是违规求助? 4569688
关于积分的说明 14320442
捐赠科研通 4496086
什么是DOI,文献DOI怎么找? 2463069
邀请新用户注册赠送积分活动 1452085
关于科研通互助平台的介绍 1427268