Method validation and new peak detection for the liquid chromatography-mass spectrometry multi-attribute method

化学 色谱法 质谱法 假阳性悖论 检出限 线性 分析化学(期刊) 模式识别(心理学) 人工智能 计算机科学 物理 量子力学
作者
Mercy Oyugi,Xiaoshi Wang,Xiangkun Yang,Di Wu,Sarah Rogstad
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:234: 115564-115564 被引量:11
标识
DOI:10.1016/j.jpba.2023.115564
摘要

The multi-attribute method (MAM) is a liquid chromatography-mass spectrometry (LC-MS) peptide mapping technique that has been proposed as a replacement for several conventional quality control (QC) methods for therapeutic proteins. In addition to quantification of multiple product quality attributes (PQAs), MAM can also monitor impurities using a new peak detection (NPD) feature. Here, results are provided from method validation and NPD studies of an MAM approach applied to rituximab as a model monoclonal antibody (mAb). Twenty-one rituximab PQAs were monitored, including oxidation, pyroglutamination, deamidation, lysine clipping, and glycosylation. The PQA monitoring aspect of the method was validated according to ICH Guidance. Accuracy, precision, specificity, detection and quantitation limits, linearity, range, and robustness were demonstrated for this MAM approach with minimal issues. All PQAs were successfully validated except for several oxidation sites, which did not pass intermediate precision criteria. The variability found in oxidation measurements was attributed to artificial oxidation during sample preparation and could likely be alleviated through several approaches. The NPD aspect of the method was also evaluated. A spike-in approach was used to assess the limits of detection and quantitation (LOD/LOQ) of the NPD feature of MAM. For NPD, the peak intensity threshold was found to be the most critical parameter for accurate detection of impurities since a low threshold can result in false positives while a high threshold can obscure the detection of true peaks. Overall, the MAM approach presented and validated here has been demonstrated to be suitable for both targeted monitoring of rituximab PQAs and non-targeted detection of new peaks that represent impurities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yue发布了新的文献求助10
1秒前
静心完成签到,获得积分10
1秒前
希望天下0贩的0应助shirley采纳,获得10
2秒前
大猫爪草完成签到,获得积分10
2秒前
青柠完成签到,获得积分10
3秒前
禾风发布了新的文献求助10
3秒前
程小小发布了新的文献求助10
4秒前
孔wj完成签到,获得积分10
4秒前
美满元灵完成签到,获得积分10
4秒前
yue完成签到,获得积分10
5秒前
5秒前
不去明知山完成签到 ,获得积分10
9秒前
Momomo应助轮椅采纳,获得10
9秒前
伏龙完成签到,获得积分10
10秒前
纵马山川剑自提完成签到,获得积分10
11秒前
Akim应助科研助理采纳,获得10
11秒前
bigpluto发布了新的文献求助50
12秒前
禾风完成签到,获得积分10
12秒前
13秒前
14秒前
明亮香菇完成签到,获得积分10
16秒前
闪闪小小发布了新的文献求助10
17秒前
大个应助杨老师采纳,获得10
17秒前
李存孝发布了新的文献求助10
17秒前
帅气鹭洋发布了新的文献求助10
19秒前
早睡早起完成签到,获得积分10
19秒前
李健应助小刘采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
明月照我程完成签到,获得积分10
20秒前
执着发布了新的文献求助10
22秒前
浮游应助早睡早起采纳,获得10
23秒前
程小小完成签到,获得积分10
25秒前
帅气鹭洋完成签到,获得积分10
27秒前
大媛大靳吃地瓜完成签到,获得积分10
27秒前
28秒前
落无痕发布了新的文献求助10
28秒前
Akim应助林敏榆采纳,获得10
28秒前
大模型应助孔孔采纳,获得10
29秒前
开心易真完成签到 ,获得积分10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365