Method validation and new peak detection for the liquid chromatography-mass spectrometry multi-attribute method

化学 色谱法 质谱法 假阳性悖论 检出限 线性 分析化学(期刊) 模式识别(心理学) 人工智能 计算机科学 量子力学 物理
作者
Mercy Oyugi,Xiaoshi Wang,Xiangkun Yang,Di Wu,Sarah Rogstad
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:234: 115564-115564 被引量:11
标识
DOI:10.1016/j.jpba.2023.115564
摘要

The multi-attribute method (MAM) is a liquid chromatography-mass spectrometry (LC-MS) peptide mapping technique that has been proposed as a replacement for several conventional quality control (QC) methods for therapeutic proteins. In addition to quantification of multiple product quality attributes (PQAs), MAM can also monitor impurities using a new peak detection (NPD) feature. Here, results are provided from method validation and NPD studies of an MAM approach applied to rituximab as a model monoclonal antibody (mAb). Twenty-one rituximab PQAs were monitored, including oxidation, pyroglutamination, deamidation, lysine clipping, and glycosylation. The PQA monitoring aspect of the method was validated according to ICH Guidance. Accuracy, precision, specificity, detection and quantitation limits, linearity, range, and robustness were demonstrated for this MAM approach with minimal issues. All PQAs were successfully validated except for several oxidation sites, which did not pass intermediate precision criteria. The variability found in oxidation measurements was attributed to artificial oxidation during sample preparation and could likely be alleviated through several approaches. The NPD aspect of the method was also evaluated. A spike-in approach was used to assess the limits of detection and quantitation (LOD/LOQ) of the NPD feature of MAM. For NPD, the peak intensity threshold was found to be the most critical parameter for accurate detection of impurities since a low threshold can result in false positives while a high threshold can obscure the detection of true peaks. Overall, the MAM approach presented and validated here has been demonstrated to be suitable for both targeted monitoring of rituximab PQAs and non-targeted detection of new peaks that represent impurities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助小田采纳,获得10
1秒前
哎哟哎哟发布了新的文献求助10
1秒前
欧皇完成签到,获得积分20
2秒前
Lucas应助junfeiwang采纳,获得10
2秒前
东方元语发布了新的文献求助10
2秒前
推土机爱学习完成签到 ,获得积分10
2秒前
隐形曼青应助潇湘客采纳,获得10
3秒前
3秒前
3秒前
limi完成签到,获得积分10
3秒前
文刀完成签到,获得积分10
3秒前
pick_up完成签到,获得积分10
4秒前
4秒前
AHR发布了新的文献求助10
5秒前
111发布了新的文献求助30
5秒前
Koma完成签到,获得积分10
5秒前
平家boy发布了新的文献求助10
5秒前
5秒前
limi发布了新的文献求助10
6秒前
一一一应助感动白凝采纳,获得10
6秒前
7秒前
7秒前
Koma发布了新的文献求助10
8秒前
冷静剑成完成签到,获得积分10
8秒前
灰鲸发布了新的文献求助10
8秒前
我爱读文献完成签到,获得积分10
9秒前
9秒前
Zero发布了新的文献求助10
9秒前
背后的映寒完成签到,获得积分10
9秒前
Steven24go发布了新的文献求助10
10秒前
今后应助ZZC10采纳,获得10
10秒前
落山姬完成签到,获得积分10
11秒前
11秒前
11秒前
xiaoxiao完成签到,获得积分10
11秒前
12秒前
111发布了新的文献求助10
12秒前
高皮皮完成签到,获得积分10
12秒前
小青椒应助childe采纳,获得50
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531940
求助须知:如何正确求助?哪些是违规求助? 4620674
关于积分的说明 14574347
捐赠科研通 4560401
什么是DOI,文献DOI怎么找? 2498857
邀请新用户注册赠送积分活动 1478757
关于科研通互助平台的介绍 1450090