Method validation and new peak detection for the liquid chromatography-mass spectrometry multi-attribute method

化学 色谱法 质谱法 假阳性悖论 检出限 线性 分析化学(期刊) 模式识别(心理学) 人工智能 计算机科学 量子力学 物理
作者
Mercy Oyugi,Xiaoshi Wang,Xiangkun Yang,Di Wu,Sarah Rogstad
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:234: 115564-115564 被引量:9
标识
DOI:10.1016/j.jpba.2023.115564
摘要

The multi-attribute method (MAM) is a liquid chromatography-mass spectrometry (LC-MS) peptide mapping technique that has been proposed as a replacement for several conventional quality control (QC) methods for therapeutic proteins. In addition to quantification of multiple product quality attributes (PQAs), MAM can also monitor impurities using a new peak detection (NPD) feature. Here, results are provided from method validation and NPD studies of an MAM approach applied to rituximab as a model monoclonal antibody (mAb). Twenty-one rituximab PQAs were monitored, including oxidation, pyroglutamination, deamidation, lysine clipping, and glycosylation. The PQA monitoring aspect of the method was validated according to ICH Guidance. Accuracy, precision, specificity, detection and quantitation limits, linearity, range, and robustness were demonstrated for this MAM approach with minimal issues. All PQAs were successfully validated except for several oxidation sites, which did not pass intermediate precision criteria. The variability found in oxidation measurements was attributed to artificial oxidation during sample preparation and could likely be alleviated through several approaches. The NPD aspect of the method was also evaluated. A spike-in approach was used to assess the limits of detection and quantitation (LOD/LOQ) of the NPD feature of MAM. For NPD, the peak intensity threshold was found to be the most critical parameter for accurate detection of impurities since a low threshold can result in false positives while a high threshold can obscure the detection of true peaks. Overall, the MAM approach presented and validated here has been demonstrated to be suitable for both targeted monitoring of rituximab PQAs and non-targeted detection of new peaks that represent impurities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半日闲发布了新的文献求助10
1秒前
为之完成签到,获得积分10
1秒前
豆豆欢欢乐完成签到,获得积分10
2秒前
落后凝莲完成签到,获得积分10
6秒前
狗头发布了新的文献求助10
6秒前
半日闲完成签到,获得积分10
7秒前
chyyen完成签到 ,获得积分10
8秒前
张兴完成签到,获得积分20
9秒前
白雪皑皑完成签到 ,获得积分10
10秒前
孙一应助Ade采纳,获得10
12秒前
调皮的千万完成签到,获得积分10
13秒前
戴玥应助ECHO采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
浅尝离白应助科研通管家采纳,获得30
16秒前
娜娜完成签到,获得积分10
16秒前
雪白的面包完成签到 ,获得积分10
22秒前
ECHO完成签到,获得积分10
22秒前
23秒前
iNk应助sss采纳,获得10
23秒前
OAHCIL完成签到 ,获得积分10
24秒前
24秒前
善学以致用应助maimu采纳,获得20
25秒前
彦希完成签到 ,获得积分10
26秒前
Plucky完成签到,获得积分10
27秒前
28秒前
31秒前
34秒前
39秒前
绝不拖延完成签到,获得积分10
39秒前
GOAT完成签到,获得积分10
41秒前
Hanguo发布了新的文献求助10
43秒前
43秒前
46秒前
科研通AI2S应助美满的忆枫采纳,获得10
47秒前
博修发布了新的文献求助10
48秒前
jw完成签到,获得积分10
49秒前
且放青山远完成签到,获得积分10
50秒前
Xiaopan完成签到 ,获得积分10
50秒前
52秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262680
求助须知:如何正确求助?哪些是违规求助? 2903319
关于积分的说明 8324818
捐赠科研通 2573399
什么是DOI,文献DOI怎么找? 1398249
科研通“疑难数据库(出版商)”最低求助积分说明 654044
邀请新用户注册赠送积分活动 632642