FADS: Fourier-Augmentation Based Data-Shunting for Few-Shot Classification

计算机科学 调车 弹丸 傅里叶变换 人工智能 一次性 计算机视觉 模式识别(心理学) 数学 医学 材料科学 工程类 数学分析 机械工程 内科学 冶金
作者
Shuai Shao,Yan Wang,Bin Liu,Weifeng Liu,Yanjiang Wang,Baodi Liu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 839-851 被引量:13
标识
DOI:10.1109/tcsvt.2023.3292519
摘要

Collecting a substantial number of labeled samples is infeasible in many real-world scenarios, thereby bringing out challenges for supervised classification. The research on Few-Shot Classification (FSC) aims to address this issue. Current FSC methods mainly leverage ideas such as meta-learning, self-supervised learning, and data augmentation. Among them, data augmentation appears to be an extremely efficient approach to alleviate the aforementioned data-deficiency problem. Here, we propose a novel data augmentation based FSC method termed Fourier-Augmentation based Data-Shunting (FADS). FADS mainly contains two operations, namely Fourier-based data augmentation (FDA) and data shunting. (i) Fourier transform has a desirable property for classification tasks: the image's phase and amplitude components in the frequency domain correspond to its high-level structure (i.e., semantic) and low-level style (i.e., statistic) information, which do not interfere with each other. Inspired by this observation, we design the FDA operation, which changes the amplitude spectrum of the to-be-augmented images to obtain new images of the same category. (ii) Then we design the data shunting operation to cooperate with the FDA to accomplish FSC. Specifically, it splits the augmented data into different groups to get independent, weak decisions and then fuses them to obtain a unified, strong decision. We conduct experiments on four benchmark datasets. Results show that utilizing our method brings a performance gain of 0.3%-2% in terms of classification accuracy, compared with the classical methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
良辰应助旺旺采纳,获得10
1秒前
1秒前
种草匠完成签到,获得积分10
2秒前
是小松啊完成签到 ,获得积分10
2秒前
zuojuan发布了新的文献求助10
2秒前
3秒前
点金石完成签到,获得积分10
3秒前
3秒前
song完成签到,获得积分20
4秒前
坚强亦丝应助落寞臻采纳,获得10
4秒前
4秒前
cc发布了新的文献求助10
4秒前
科研通AI5应助Brian采纳,获得10
5秒前
5秒前
庸人自扰完成签到,获得积分10
6秒前
FashionBoy应助小狐狸采纳,获得10
6秒前
7秒前
桐桐应助天玄采纳,获得10
7秒前
峰宝宝完成签到,获得积分10
10秒前
Estella发布了新的文献求助10
10秒前
小李发布了新的文献求助10
10秒前
liangliu完成签到 ,获得积分10
10秒前
lh发布了新的文献求助10
10秒前
Lucas应助蓬莱山采纳,获得10
11秒前
11秒前
12秒前
13秒前
戴衡霞完成签到,获得积分10
13秒前
幸运儿完成签到 ,获得积分10
14秒前
14秒前
NexusExplorer应助LLLLLL采纳,获得10
15秒前
科研通AI5应助linmoumou采纳,获得10
15秒前
祯果粒发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
彭于彦祖应助Dr. LJ采纳,获得10
17秒前
17秒前
17秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669446
求助须知:如何正确求助?哪些是违规求助? 3227157
关于积分的说明 9773662
捐赠科研通 2937177
什么是DOI,文献DOI怎么找? 1609199
邀请新用户注册赠送积分活动 760130
科研通“疑难数据库(出版商)”最低求助积分说明 735760