Learning Multi-Agent Intention-Aware Communication for Optimal Multi-Order Execution in Finance

计算机科学 强化学习 订单(交换) 任务(项目管理) 协议(科学) 操作员(生物学) 人工智能 财务 转录因子 基因 病理 抑制因子 经济 医学 化学 管理 替代医学 生物化学
作者
Yuchen Fang,Zhenggang Tang,Kan Ren,Weiqing Liu,Li Zhao,Jiang Bian,Dongsheng Li,Weinan Zhang,Yong Yu,Tie‐Yan Liu
标识
DOI:10.1145/3580305.3599856
摘要

Order execution is a fundamental task in quantitative finance, aiming at finishing acquisition or liquidation for a number of trading orders of the specific assets. Recent advance in model-free reinforcement learning (RL) provides a data-driven solution to the order execution problem. However, the existing works always optimize execution for an individual order, overlooking the practice that multiple orders are specified to execute simultaneously, resulting in suboptimality and bias. In this paper, we first present a multi-agent RL (MARL) method for multi-order execution considering practical constraints. Specifically, we treat every agent as an individual operator to trade one specific order, while keeping communicating with each other and collaborating for maximizing the overall profits. Nevertheless, the existing MARL algorithms often incorporate communication among agents by exchanging only the information of their partial observations, which is inefficient in complicated financial market. To improve collaboration, we then propose a learnable multi-round communication protocol, for the agents communicating the intended actions with each other and refining accordingly. It is optimized through a novel action value attribution method which is provably consistent with the original learning objective yet more efficient. The experiments on the data from two real-world markets have illustrated superior performance with significantly better collaboration effectiveness achieved by our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiyr发布了新的文献求助10
1秒前
2秒前
雨夜星空应助元烨华采纳,获得10
2秒前
5秒前
赵靖易完成签到,获得积分10
5秒前
5秒前
Samuel发布了新的文献求助10
5秒前
平常的毛豆应助HUO采纳,获得10
6秒前
田様应助加快步伐采纳,获得10
7秒前
雨夜星空应助元烨华采纳,获得10
8秒前
LIUZQ发布了新的文献求助10
9秒前
10秒前
11秒前
赘婿应助天天采纳,获得10
12秒前
keyan完成签到,获得积分10
12秒前
Garra9822完成签到 ,获得积分10
12秒前
Rzz发布了新的文献求助10
13秒前
领导范儿应助赵靖易采纳,获得10
13秒前
Jasper应助赵靖易采纳,获得30
13秒前
研友_VZG7GZ应助赵靖易采纳,获得10
14秒前
科研通AI5应助赵靖易采纳,获得30
14秒前
科研通AI5应助赵靖易采纳,获得10
14秒前
CodeCraft应助风趣的傲之采纳,获得10
14秒前
yyy完成签到,获得积分10
15秒前
奋斗怀柔发布了新的文献求助10
16秒前
CHyaa完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
FashionBoy应助chenchenchen采纳,获得10
17秒前
咩咩羊发布了新的文献求助10
18秒前
19秒前
大个应助糕gao采纳,获得10
21秒前
加快步伐发布了新的文献求助10
21秒前
LIUZQ完成签到,获得积分10
22秒前
Emma完成签到,获得积分10
22秒前
大模型应助受伤自行车采纳,获得50
23秒前
hetao发布了新的文献求助50
23秒前
Weitt完成签到,获得积分10
24秒前
Laus发布了新的文献求助10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769645
求助须知:如何正确求助?哪些是违规求助? 3314713
关于积分的说明 10173349
捐赠科研通 3030002
什么是DOI,文献DOI怎么找? 1662548
邀请新用户注册赠送积分活动 795036
科研通“疑难数据库(出版商)”最低求助积分说明 756500