Collaborative Multi-Metadata Fusion to Improve the Classification of Lumbar Disc Herniation

计算机科学 人工智能 特征(语言学) 模式识别(心理学) 卷积神经网络 特征选择 上下文图像分类 计算机辅助诊断 最小边界框 特征提取 Sørensen–骰子系数 分割 图像分割 计算机视觉 图像(数学) 哲学 语言学
作者
Shuyi Lu,Jinhua Liu,Xiaojie Wang,Yuanfeng Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3590-3601 被引量:1
标识
DOI:10.1109/tmi.2023.3294248
摘要

Computed tomography (CT) images are the most commonly used radiographic imaging modality for detecting and diagnosing lumbar diseases. Despite many outstanding advances, computer-aided diagnosis (CAD) of lumbar disc disease remains challenging due to the complexity of pathological abnormalities and poor discrimination between different lesions. Therefore, we propose a Collaborative Multi-Metadata Fusion classification network (CMMF-Net) to address these challenges. The network consists of a feature selection model and a classification model. We propose a novel Multi-scale Feature Fusion (MFF) module that can improve the edge learning ability of the network region of interest (ROI) by fusing features of different scales and dimensions. We also propose a new loss function to improve the convergence of the network to the internal and external edges of the intervertebral disc. Subsequently, we use the ROI bounding box from the feature selection model to crop the original image and calculate the distance features matrix. We then concatenate the cropped CT images, multiscale fusion features, and distance feature matrices and input them into the classification network. Next, the model outputs the classification results and the class activation map (CAM). Finally, the CAM of the original image size is returned to the feature selection network during the upsampling process to achieve collaborative model training. Extensive experiments demonstrate the effectiveness of our method. The model achieved 91.32% accuracy in the lumbar spine disease classification task. In the labelled lumbar disc segmentation task, the Dice coefficient reaches 94.39%. The classification accuracy in the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) reaches 91.82%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芋头不秃头完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
kushdw完成签到,获得积分10
2秒前
傲娇小废柴完成签到,获得积分20
3秒前
TranYan发布了新的文献求助10
3秒前
Sally发布了新的文献求助10
3秒前
sun应助怡然的飞珍采纳,获得20
4秒前
4秒前
5秒前
5秒前
孔雨珍完成签到,获得积分10
6秒前
娇气的春天完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
大模型应助奔奔采纳,获得10
8秒前
9秒前
9秒前
Owen应助西哈哈采纳,获得10
9秒前
Jessie完成签到 ,获得积分10
9秒前
烟花应助孔雨珍采纳,获得10
10秒前
王小志发布了新的文献求助10
10秒前
科研通AI5应助SCI采纳,获得10
10秒前
net完成签到 ,获得积分10
10秒前
Sally完成签到,获得积分10
11秒前
飘逸蘑菇完成签到 ,获得积分10
11秒前
12秒前
小二郎应助tao采纳,获得10
12秒前
陈丫发布了新的文献求助10
12秒前
12秒前
12秒前
小二郎应助凉风有信9527采纳,获得10
13秒前
LEMON发布了新的文献求助20
14秒前
炜大的我完成签到,获得积分10
14秒前
haimianbaobao发布了新的文献求助10
14秒前
传奇3应助研友_nPoXoL采纳,获得10
14秒前
lpp完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794