Collaborative Multi-Metadata Fusion to Improve the Classification of Lumbar Disc Herniation

计算机科学 人工智能 特征(语言学) 模式识别(心理学) 卷积神经网络 特征选择 上下文图像分类 计算机辅助诊断 最小边界框 特征提取 Sørensen–骰子系数 分割 图像分割 计算机视觉 图像(数学) 哲学 语言学
作者
Shuyi Lu,Jinhua Liu,Xiaojie Wang,Yuanfeng Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3590-3601 被引量:1
标识
DOI:10.1109/tmi.2023.3294248
摘要

Computed tomography (CT) images are the most commonly used radiographic imaging modality for detecting and diagnosing lumbar diseases. Despite many outstanding advances, computer-aided diagnosis (CAD) of lumbar disc disease remains challenging due to the complexity of pathological abnormalities and poor discrimination between different lesions. Therefore, we propose a Collaborative Multi-Metadata Fusion classification network (CMMF-Net) to address these challenges. The network consists of a feature selection model and a classification model. We propose a novel Multi-scale Feature Fusion (MFF) module that can improve the edge learning ability of the network region of interest (ROI) by fusing features of different scales and dimensions. We also propose a new loss function to improve the convergence of the network to the internal and external edges of the intervertebral disc. Subsequently, we use the ROI bounding box from the feature selection model to crop the original image and calculate the distance features matrix. We then concatenate the cropped CT images, multiscale fusion features, and distance feature matrices and input them into the classification network. Next, the model outputs the classification results and the class activation map (CAM). Finally, the CAM of the original image size is returned to the feature selection network during the upsampling process to achieve collaborative model training. Extensive experiments demonstrate the effectiveness of our method. The model achieved 91.32% accuracy in the lumbar spine disease classification task. In the labelled lumbar disc segmentation task, the Dice coefficient reaches 94.39%. The classification accuracy in the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) reaches 91.82%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望完成签到 ,获得积分10
刚刚
刚刚
科研通AI6应助辣辣采纳,获得10
刚刚
化学教育学学学完成签到,获得积分10
1秒前
1秒前
科研通AI6应助xiaotingMa采纳,获得10
2秒前
2秒前
hqq发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
七濑发布了新的文献求助10
4秒前
安静愫完成签到,获得积分10
5秒前
CipherSage应助songyl采纳,获得10
7秒前
7秒前
心信鑫发布了新的文献求助10
7秒前
123456发布了新的文献求助10
7秒前
韩达大发布了新的文献求助10
7秒前
8秒前
9秒前
鱿鱼的月亮完成签到 ,获得积分10
9秒前
飞鸟发布了新的文献求助10
10秒前
阿九发布了新的文献求助10
10秒前
快乐的小王完成签到,获得积分20
10秒前
10秒前
10秒前
染墨绘梨衣完成签到,获得积分10
10秒前
zjq发布了新的文献求助10
11秒前
CipherSage应助yyy采纳,获得10
11秒前
悦耳的石头完成签到,获得积分10
11秒前
12秒前
希望天下0贩的0应助Xin5599采纳,获得10
12秒前
12秒前
12秒前
王橘子完成签到,获得积分10
13秒前
yunna_ning发布了新的文献求助50
14秒前
大仙完成签到,获得积分10
14秒前
李侑勳完成签到,获得积分10
14秒前
乐乐应助柯林采纳,获得10
14秒前
小蘑菇应助九木德采纳,获得10
14秒前
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443221
求助须知:如何正确求助?哪些是违规求助? 4553119
关于积分的说明 14241113
捐赠科研通 4474726
什么是DOI,文献DOI怎么找? 2452134
邀请新用户注册赠送积分活动 1443079
关于科研通互助平台的介绍 1418721