Collaborative Multi-Metadata Fusion to Improve the Classification of Lumbar Disc Herniation

计算机科学 人工智能 特征(语言学) 模式识别(心理学) 卷积神经网络 特征选择 上下文图像分类 计算机辅助诊断 最小边界框 特征提取 Sørensen–骰子系数 分割 图像分割 计算机视觉 图像(数学) 哲学 语言学
作者
Shuyi Lu,Jinhua Liu,Xiaojie Wang,Yuanfeng Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3590-3601 被引量:1
标识
DOI:10.1109/tmi.2023.3294248
摘要

Computed tomography (CT) images are the most commonly used radiographic imaging modality for detecting and diagnosing lumbar diseases. Despite many outstanding advances, computer-aided diagnosis (CAD) of lumbar disc disease remains challenging due to the complexity of pathological abnormalities and poor discrimination between different lesions. Therefore, we propose a Collaborative Multi-Metadata Fusion classification network (CMMF-Net) to address these challenges. The network consists of a feature selection model and a classification model. We propose a novel Multi-scale Feature Fusion (MFF) module that can improve the edge learning ability of the network region of interest (ROI) by fusing features of different scales and dimensions. We also propose a new loss function to improve the convergence of the network to the internal and external edges of the intervertebral disc. Subsequently, we use the ROI bounding box from the feature selection model to crop the original image and calculate the distance features matrix. We then concatenate the cropped CT images, multiscale fusion features, and distance feature matrices and input them into the classification network. Next, the model outputs the classification results and the class activation map (CAM). Finally, the CAM of the original image size is returned to the feature selection network during the upsampling process to achieve collaborative model training. Extensive experiments demonstrate the effectiveness of our method. The model achieved 91.32% accuracy in the lumbar spine disease classification task. In the labelled lumbar disc segmentation task, the Dice coefficient reaches 94.39%. The classification accuracy in the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) reaches 91.82%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanwan发布了新的文献求助10
1秒前
开朗又菱发布了新的文献求助10
1秒前
orixero应助刘家成采纳,获得10
2秒前
fzzzzlucy发布了新的文献求助10
3秒前
不是山谷发布了新的文献求助10
3秒前
zzc发布了新的文献求助10
3秒前
诸以晴发布了新的文献求助10
3秒前
4秒前
不配.应助司徒无剑采纳,获得20
5秒前
简易完成签到,获得积分10
5秒前
Yiers发布了新的文献求助10
6秒前
Akim应助fzzzzlucy采纳,获得10
8秒前
10秒前
10秒前
诸以晴完成签到,获得积分10
11秒前
sasaki完成签到,获得积分10
12秒前
调研昵称发布了新的文献求助10
13秒前
yanwan完成签到,获得积分20
14秒前
14秒前
14秒前
15秒前
不配.应助terrific采纳,获得10
15秒前
Aurora完成签到,获得积分10
16秒前
LaKers发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
勇敢芙完成签到,获得积分20
18秒前
19秒前
简易关注了科研通微信公众号
19秒前
琳琳发布了新的文献求助10
19秒前
19秒前
英俊的鱼关注了科研通微信公众号
20秒前
ChenYX发布了新的文献求助10
20秒前
书先阁生发布了新的文献求助10
20秒前
LaKers完成签到,获得积分10
21秒前
叶孤城发布了新的文献求助10
21秒前
伊凡完成签到,获得积分10
21秒前
22秒前
FashionBoy应助www采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136581
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782406
捐赠科研通 2443643
什么是DOI,文献DOI怎么找? 1299325
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954