Collaborative Multi-Metadata Fusion to Improve the Classification of Lumbar Disc Herniation

计算机科学 人工智能 特征(语言学) 模式识别(心理学) 卷积神经网络 特征选择 上下文图像分类 计算机辅助诊断 最小边界框 特征提取 Sørensen–骰子系数 分割 图像分割 计算机视觉 图像(数学) 哲学 语言学
作者
Shuyi Lu,Jinhua Liu,Xiaojie Wang,Yuanfeng Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3590-3601 被引量:1
标识
DOI:10.1109/tmi.2023.3294248
摘要

Computed tomography (CT) images are the most commonly used radiographic imaging modality for detecting and diagnosing lumbar diseases. Despite many outstanding advances, computer-aided diagnosis (CAD) of lumbar disc disease remains challenging due to the complexity of pathological abnormalities and poor discrimination between different lesions. Therefore, we propose a Collaborative Multi-Metadata Fusion classification network (CMMF-Net) to address these challenges. The network consists of a feature selection model and a classification model. We propose a novel Multi-scale Feature Fusion (MFF) module that can improve the edge learning ability of the network region of interest (ROI) by fusing features of different scales and dimensions. We also propose a new loss function to improve the convergence of the network to the internal and external edges of the intervertebral disc. Subsequently, we use the ROI bounding box from the feature selection model to crop the original image and calculate the distance features matrix. We then concatenate the cropped CT images, multiscale fusion features, and distance feature matrices and input them into the classification network. Next, the model outputs the classification results and the class activation map (CAM). Finally, the CAM of the original image size is returned to the feature selection network during the upsampling process to achieve collaborative model training. Extensive experiments demonstrate the effectiveness of our method. The model achieved 91.32% accuracy in the lumbar spine disease classification task. In the labelled lumbar disc segmentation task, the Dice coefficient reaches 94.39%. The classification accuracy in the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) reaches 91.82%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实豪英应助yaoyao采纳,获得10
1秒前
蓝天应助shihui采纳,获得10
1秒前
Freya完成签到,获得积分20
1秒前
dl1995发布了新的文献求助10
2秒前
欣喜花生完成签到,获得积分10
2秒前
Haley完成签到 ,获得积分0
3秒前
4秒前
大力半鬼发布了新的文献求助10
5秒前
zn发布了新的文献求助10
7秒前
你我山巅自相逢完成签到 ,获得积分10
9秒前
闪闪飞柏完成签到,获得积分20
9秒前
yang发布了新的文献求助100
9秒前
买了束花发布了新的文献求助10
9秒前
10秒前
wuhu完成签到 ,获得积分10
11秒前
小尾巴完成签到,获得积分10
12秒前
琛琛多发文章完成签到,获得积分10
13秒前
科研通AI2S应助一一采纳,获得10
14秒前
mmmmm完成签到,获得积分10
14秒前
大力半鬼完成签到,获得积分10
15秒前
15秒前
SciGPT应助dl1995采纳,获得10
16秒前
19秒前
万能图书馆应助王小茹采纳,获得10
20秒前
lishi发布了新的文献求助10
22秒前
24秒前
nfyz发布了新的文献求助100
25秒前
刘娟发布了新的文献求助10
26秒前
squirrelcone完成签到 ,获得积分10
27秒前
核桃应助fang采纳,获得10
28秒前
呀y完成签到,获得积分20
28秒前
王金娥完成签到,获得积分10
28秒前
Lll发布了新的文献求助10
29秒前
876365401完成签到 ,获得积分10
30秒前
30秒前
vizi应助潘越采纳,获得10
32秒前
rabwang完成签到,获得积分10
33秒前
无花果应助PGZ采纳,获得30
33秒前
科研小废物应助韩立采纳,获得10
33秒前
mumu发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546578
求助须知:如何正确求助?哪些是违规求助? 3977757
关于积分的说明 12317153
捐赠科研通 3646147
什么是DOI,文献DOI怎么找? 2008026
邀请新用户注册赠送积分活动 1043602
科研通“疑难数据库(出版商)”最低求助积分说明 932299