已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Collaborative Multi-Metadata Fusion to Improve the Classification of Lumbar Disc Herniation

计算机科学 人工智能 特征(语言学) 模式识别(心理学) 卷积神经网络 特征选择 上下文图像分类 计算机辅助诊断 最小边界框 特征提取 Sørensen–骰子系数 分割 图像分割 计算机视觉 图像(数学) 哲学 语言学
作者
Shuyi Lu,Jinhua Liu,Xiaojie Wang,Yuanfeng Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3590-3601 被引量:1
标识
DOI:10.1109/tmi.2023.3294248
摘要

Computed tomography (CT) images are the most commonly used radiographic imaging modality for detecting and diagnosing lumbar diseases. Despite many outstanding advances, computer-aided diagnosis (CAD) of lumbar disc disease remains challenging due to the complexity of pathological abnormalities and poor discrimination between different lesions. Therefore, we propose a Collaborative Multi-Metadata Fusion classification network (CMMF-Net) to address these challenges. The network consists of a feature selection model and a classification model. We propose a novel Multi-scale Feature Fusion (MFF) module that can improve the edge learning ability of the network region of interest (ROI) by fusing features of different scales and dimensions. We also propose a new loss function to improve the convergence of the network to the internal and external edges of the intervertebral disc. Subsequently, we use the ROI bounding box from the feature selection model to crop the original image and calculate the distance features matrix. We then concatenate the cropped CT images, multiscale fusion features, and distance feature matrices and input them into the classification network. Next, the model outputs the classification results and the class activation map (CAM). Finally, the CAM of the original image size is returned to the feature selection network during the upsampling process to achieve collaborative model training. Extensive experiments demonstrate the effectiveness of our method. The model achieved 91.32% accuracy in the lumbar spine disease classification task. In the labelled lumbar disc segmentation task, the Dice coefficient reaches 94.39%. The classification accuracy in the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) reaches 91.82%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后乘风完成签到 ,获得积分10
刚刚
1秒前
毛益聪完成签到,获得积分10
2秒前
2秒前
奎奎完成签到 ,获得积分10
2秒前
Kiling完成签到,获得积分10
2秒前
碧蓝的之云完成签到 ,获得积分10
3秒前
无限铸海发布了新的文献求助10
3秒前
苻谷丝发布了新的文献求助10
3秒前
洋洋发布了新的文献求助10
4秒前
6秒前
6秒前
wanshang2340发布了新的文献求助10
7秒前
ding应助任小飞采纳,获得10
7秒前
文章发发发完成签到 ,获得积分10
8秒前
君子兰完成签到,获得积分10
8秒前
利物浦2024完成签到,获得积分10
9秒前
WQwsrf发布了新的文献求助10
11秒前
Hector发布了新的文献求助10
12秒前
13秒前
13秒前
屁屁屁屁屁祺完成签到 ,获得积分10
15秒前
17秒前
19秒前
DryDry完成签到 ,获得积分10
21秒前
John完成签到 ,获得积分10
21秒前
Ava应助风不定采纳,获得10
22秒前
22秒前
23秒前
24秒前
kiveeen完成签到,获得积分10
24秒前
25秒前
喵喵喵完成签到 ,获得积分10
26秒前
27秒前
27秒前
科目三应助WQwsrf采纳,获得10
28秒前
科研通AI6应助味道采纳,获得10
28秒前
许飞完成签到 ,获得积分10
29秒前
lyhwkyjy应助zhangh65采纳,获得10
29秒前
luckyseven完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407434
求助须知:如何正确求助?哪些是违规求助? 4525015
关于积分的说明 14100656
捐赠科研通 4438741
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428463
关于科研通互助平台的介绍 1406482