材料科学
复合材料
环氧树脂
相对介电常数
介电常数
体积分数
纤维
电介质
微观结构
电容器
电压
电气工程
光电子学
工程类
作者
Philipp Baron,Philipp Lenz,Klaus Peter Koch,Armin Wittmann,Georg Fischer
标识
DOI:10.1016/j.mtcomm.2023.106656
摘要
The relative permittivity of flax/epoxy composites in unidirectional and biaxial orientations was mapped in the frequency range of 1 kHz to 200 kHz, and for the first time in the range of 1 MHz to 1 GHz. In addition, permittivity was investigated for the first time in the temperature range between -20 °C and 50 °C. These composites, produced using the vacuum infusion process, are increasingly used for sustainable and lightweight structural components in the automotive industry. The relative permittivity was determined using a self-developed plate capacitor with an LCR bridge and an impedance analyzer. An examination of the microstructure of the flax/epoxy composites shows that the fibers are disordered in the composite, resulting in local variations in fiber volume fraction. Furthermore, it was shown that the matrix also infiltrates into the fiber itself, resulting in an increase of the matrix fraction. It was found that unidirectional fabrics had a higher relative permittivity than biaxial fabrics, due to a higher fiber volume fraction and lower proportion of epoxy. The results suggest that it is the fiber volume fraction, rather than the manufacturing process and fiber orientation, that primarily determines the relative permittivity. It was also found that the permittivity continues to decrease below room temperature and thus behaves in a manner typical of the material in this temperature range as well.
科研通智能强力驱动
Strongly Powered by AbleSci AI