作者
Saverio D'Amico,Daniele Dall’Olio,Claudia Sala,Lorenzo Dall’Olio,Elisabetta Sauta,Matteo Zampini,Gianluca Asti,Luca Lanino,Giulia Maggioni,Alessia Campagna,Marta Ubezio,Antonio Russo,Marilena Bicchieri,Elena Riva,Cristina Astrid Tentori,Erica Travaglino,Pierandrea Morandini,Victor Savevski,Armando Santoro,Iñigo Prada-Luengo,Anders Krogh,Valeria Santini,Shahram Kordasti,Uwe Platzbecker,María Díez‐Campelo,Pierre Fenaux,Torsten Haferlach,Gastone Castellani,Matteo Giovanni Della Porta
摘要
Synthetic data are artificial data generated without including any real patient information by an algorithm trained to learn the characteristics of a real source data set and became widely used to accelerate research in life sciences. We aimed to (1) apply generative artificial intelligence to build synthetic data in different hematologic neoplasms; (2) develop a synthetic validation framework to assess data fidelity and privacy preservability; and (3) test the capability of synthetic data to accelerate clinical/translational research in hematology.