材料科学
非易失性存储器
光电子学
铁电性
原子层沉积
闪存
氧化物
图层(电子)
纳米技术
电介质
计算机科学
操作系统
冶金
作者
Dongsu Kim,Chong‐Myeong Song,Su Jin Heo,Goeun Pyo,Dongha Kim,Ji Hwan Lee,Kyung‐Ho Park,Shinbuhm Lee,Hyuk‐Jun Kwon,Jae Eun Jang
摘要
To improve performances of nonvolatile charge trap flash memory devices, we propose an in situ Hf0.5Zr0.5O2 (HZO)/HfO2/Al2O3 stacked structure, which is compatible for Si with the metal–oxide–semiconductor (MOS) process based on all atomic layer deposition. Since the appropriate bandgap difference between Al2O3 and HfO2, stable charge trap operation is achieved. High-quality ferroelectric HZO film characteristics were showed by minimizing defects and Si diffusion through the sub-layer of Al2O3/HfO2. Therefore, HZO as a blocking layer enhances the memory performance of the charge trap structure due to its specific polarization effect. The proposed device has the high polarization characteristics of HZO (2Pr > 20 μ C/cm2) along with a MOS-cap window (>4 V), good retention capability (>10 years), fast program/erase response operation times (<200 μs), and strong durability (>105 cycles) while operating as a form of single level cell. By comparing Al2O3 and ferroelectric HZO as a blocking layer of the charge trap device, we confirmed that the HZO/HfO2/Al2O3 multi-layer structure had excellent characteristics according to various memory performance indicators. Our proposed high-performance charge trap flash memory can be employed in various applications, including Si-based three-dimensional structures with artificial intelligence systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI