亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Skip Connection YOLO Architecture for Noise Barrier Defect Detection Using UAV-Based Images in High-Speed Railway

计算机科学 噪音(视频) 最小边界框 架空(工程) 人工智能 卷积神经网络 声屏障 保险丝(电气) 跳跃式监视 实时计算 工程类 降噪 图像(数学) 操作系统 电气工程
作者
Jing Cui,Yong Qin,Yunpeng Wu,Changhong Shao,Huaizhi Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12180-12195 被引量:21
标识
DOI:10.1109/tits.2023.3292934
摘要

Noise barriers play a critical role in reducing noise and preventing foreign object from invading railway. Noise barrier structural defects such as rusted column, deteriorated mortar layer and other damages make its structure unstable, thereby threatening seriously railway operation safety. Unfortunately, existing noise barrier inspection methods still rely heavily on manual inspection, which are low-efficiency, subjective and difficult to detect the external structure of noise barriers. To solve these problems, this study proposes an automatic inspection manner for noise barrier using UAV images, and develops a fully convolutional network (FCN)-based noise barrier defect detection approach named skip connection YOLO detection network (SCYNet), which focuses on three aspects: network structure, loss function and data augmentation. First, a skip-connected feature structure Simi-BiFPN is incorporated into the network to fully fuse the features extracted from various scale layers without adding much computational overhead. Second, a NoiseIoU loss for bounding box regression is designed to improve existing IoU-based losses and get better performance on small dataset. Thirdly, a mixed sample data augmentation method named AutoFMix is proposed to eliminate the over-fitting issue caused by excessive similarity between samples, and further improve the detection accuracy. Finally, experiments conducted on the UAV railway noise barrier dataset show that the proposed SCYNet model achieves 92.2 mAP and 78.7 FPS, respectively, which outperform other models in terms of accuracy and processing speed. The fast-processing speed and high detection accuracy can quickly turn UAV images into useful information to assist railway maintenance, thereby improving the safety of train operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白砖家完成签到 ,获得积分10
4秒前
8秒前
8秒前
Angina吴发布了新的文献求助10
11秒前
Angina吴完成签到,获得积分10
16秒前
球球子完成签到,获得积分10
18秒前
18秒前
李健的小迷弟应助Angina吴采纳,获得10
22秒前
球球子发布了新的文献求助10
24秒前
小二郎应助Sience采纳,获得10
25秒前
32秒前
Sience发布了新的文献求助10
37秒前
量子星尘发布了新的文献求助150
1分钟前
汉堡包应助任性的皮皮虾采纳,获得10
1分钟前
Jessica完成签到,获得积分10
2分钟前
2分钟前
2分钟前
闹心发布了新的文献求助10
2分钟前
yuan发布了新的文献求助10
2分钟前
852应助fabricio10采纳,获得10
2分钟前
星辰大海应助yuan采纳,获得10
2分钟前
英姑应助skm采纳,获得10
3分钟前
4分钟前
叶也完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
fabricio10发布了新的文献求助10
4分钟前
鬼笔环肽应助等乙天采纳,获得10
4分钟前
矢量完成签到,获得积分10
4分钟前
5分钟前
淡然绝山发布了新的文献求助10
5分钟前
淡然绝山完成签到,获得积分10
5分钟前
5分钟前
Kevin完成签到 ,获得积分10
5分钟前
5分钟前
三哥发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
科研通AI2S应助有魅力发卡采纳,获得10
6分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148589
求助须知:如何正确求助?哪些是违规求助? 4344898
关于积分的说明 13529950
捐赠科研通 4186981
什么是DOI,文献DOI怎么找? 2295986
邀请新用户注册赠送积分活动 1296393
关于科研通互助平台的介绍 1240265