Skip Connection YOLO Architecture for Noise Barrier Defect Detection Using UAV-Based Images in High-Speed Railway

计算机科学 噪音(视频) 最小边界框 架空(工程) 人工智能 卷积神经网络 声屏障 保险丝(电气) 跳跃式监视 实时计算 工程类 降噪 图像(数学) 操作系统 电气工程
作者
Jing Cui,Yong Qin,Yunpeng Wu,Changhong Shao,Huaizhi Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12180-12195 被引量:21
标识
DOI:10.1109/tits.2023.3292934
摘要

Noise barriers play a critical role in reducing noise and preventing foreign object from invading railway. Noise barrier structural defects such as rusted column, deteriorated mortar layer and other damages make its structure unstable, thereby threatening seriously railway operation safety. Unfortunately, existing noise barrier inspection methods still rely heavily on manual inspection, which are low-efficiency, subjective and difficult to detect the external structure of noise barriers. To solve these problems, this study proposes an automatic inspection manner for noise barrier using UAV images, and develops a fully convolutional network (FCN)-based noise barrier defect detection approach named skip connection YOLO detection network (SCYNet), which focuses on three aspects: network structure, loss function and data augmentation. First, a skip-connected feature structure Simi-BiFPN is incorporated into the network to fully fuse the features extracted from various scale layers without adding much computational overhead. Second, a NoiseIoU loss for bounding box regression is designed to improve existing IoU-based losses and get better performance on small dataset. Thirdly, a mixed sample data augmentation method named AutoFMix is proposed to eliminate the over-fitting issue caused by excessive similarity between samples, and further improve the detection accuracy. Finally, experiments conducted on the UAV railway noise barrier dataset show that the proposed SCYNet model achieves 92.2 mAP and 78.7 FPS, respectively, which outperform other models in terms of accuracy and processing speed. The fast-processing speed and high detection accuracy can quickly turn UAV images into useful information to assist railway maintenance, thereby improving the safety of train operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UGO发布了新的文献求助10
刚刚
joeking完成签到 ,获得积分10
刚刚
金咪完成签到,获得积分20
刚刚
wuwuhu完成签到,获得积分10
1秒前
柠檬不萌完成签到,获得积分20
1秒前
fangang发布了新的文献求助30
2秒前
maclogos发布了新的文献求助10
2秒前
shmorby完成签到,获得积分10
2秒前
陈一一完成签到,获得积分10
2秒前
3秒前
3秒前
zyt完成签到,获得积分10
3秒前
yangxt-iga发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
ytunnut发布了新的文献求助10
4秒前
4秒前
桐桐应助huahua采纳,获得10
4秒前
所所应助细腻亦巧采纳,获得10
4秒前
4秒前
没有花活儿完成签到,获得积分10
4秒前
Jiabao完成签到,获得积分10
5秒前
6秒前
6秒前
华仔应助普鲁卡因采纳,获得10
6秒前
7秒前
可爱的函函应助粗暴的达采纳,获得10
7秒前
miao发布了新的文献求助10
7秒前
7秒前
byl完成签到,获得积分20
7秒前
7秒前
Miya_han发布了新的文献求助10
8秒前
幸运雨点完成签到,获得积分10
8秒前
张一凡完成签到,获得积分10
8秒前
萝卜青菜完成签到 ,获得积分10
9秒前
小马甲应助忧心的洙采纳,获得10
9秒前
9秒前
完美世界应助酷炫贞采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997