Skip Connection YOLO Architecture for Noise Barrier Defect Detection Using UAV-Based Images in High-Speed Railway

计算机科学 噪音(视频) 最小边界框 架空(工程) 人工智能 卷积神经网络 声屏障 保险丝(电气) 跳跃式监视 实时计算 工程类 降噪 图像(数学) 操作系统 电气工程
作者
Jing Cui,Yong Qin,Yunpeng Wu,Changhong Shao,Huaizhi Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12180-12195 被引量:21
标识
DOI:10.1109/tits.2023.3292934
摘要

Noise barriers play a critical role in reducing noise and preventing foreign object from invading railway. Noise barrier structural defects such as rusted column, deteriorated mortar layer and other damages make its structure unstable, thereby threatening seriously railway operation safety. Unfortunately, existing noise barrier inspection methods still rely heavily on manual inspection, which are low-efficiency, subjective and difficult to detect the external structure of noise barriers. To solve these problems, this study proposes an automatic inspection manner for noise barrier using UAV images, and develops a fully convolutional network (FCN)-based noise barrier defect detection approach named skip connection YOLO detection network (SCYNet), which focuses on three aspects: network structure, loss function and data augmentation. First, a skip-connected feature structure Simi-BiFPN is incorporated into the network to fully fuse the features extracted from various scale layers without adding much computational overhead. Second, a NoiseIoU loss for bounding box regression is designed to improve existing IoU-based losses and get better performance on small dataset. Thirdly, a mixed sample data augmentation method named AutoFMix is proposed to eliminate the over-fitting issue caused by excessive similarity between samples, and further improve the detection accuracy. Finally, experiments conducted on the UAV railway noise barrier dataset show that the proposed SCYNet model achieves 92.2 mAP and 78.7 FPS, respectively, which outperform other models in terms of accuracy and processing speed. The fast-processing speed and high detection accuracy can quickly turn UAV images into useful information to assist railway maintenance, thereby improving the safety of train operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小小应助高大草莓采纳,获得30
1秒前
Ginny发布了新的文献求助30
2秒前
3秒前
王梦完成签到 ,获得积分10
4秒前
舒心凡应助eyu采纳,获得50
4秒前
4秒前
shaychomac发布了新的文献求助10
5秒前
hnxxangel完成签到,获得积分10
5秒前
5秒前
爆米花应助木木采纳,获得10
6秒前
缓慢发卡完成签到,获得积分10
7秒前
17835152738完成签到,获得积分10
7秒前
8秒前
风中雨竹发布了新的文献求助10
8秒前
默默紊发布了新的文献求助10
8秒前
张巨锋完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助20
11秒前
12秒前
buno应助鞘皮采纳,获得10
12秒前
13秒前
无花果应助逗号采纳,获得10
14秒前
传奇3应助大气孱采纳,获得10
14秒前
Rouadou完成签到 ,获得积分10
17秒前
luen发布了新的文献求助10
17秒前
19秒前
华仔应助神秘的路人甲采纳,获得10
20秒前
默默紊完成签到,获得积分10
20秒前
牢大完成签到,获得积分10
20秒前
eee7完成签到,获得积分10
23秒前
san完成签到,获得积分10
23秒前
24秒前
科研通AI2S应助岳麓山老农采纳,获得10
27秒前
纯真的大象完成签到,获得积分10
27秒前
yitian完成签到 ,获得积分10
29秒前
斯文败类应助风中雨竹采纳,获得10
29秒前
无极微光应助辛卫铎采纳,获得20
29秒前
29秒前
小耗子完成签到,获得积分10
30秒前
李爱国应助cassie采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601676
求助须知:如何正确求助?哪些是违规求助? 4687108
关于积分的说明 14847661
捐赠科研通 4681810
什么是DOI,文献DOI怎么找? 2539466
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471335