亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Skip Connection YOLO Architecture for Noise Barrier Defect Detection Using UAV-Based Images in High-Speed Railway

计算机科学 噪音(视频) 最小边界框 架空(工程) 人工智能 卷积神经网络 声屏障 保险丝(电气) 跳跃式监视 实时计算 工程类 降噪 图像(数学) 操作系统 电气工程
作者
Jing Cui,Yong Qin,Yunpeng Wu,Changhong Shao,Huaizhi Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12180-12195 被引量:21
标识
DOI:10.1109/tits.2023.3292934
摘要

Noise barriers play a critical role in reducing noise and preventing foreign object from invading railway. Noise barrier structural defects such as rusted column, deteriorated mortar layer and other damages make its structure unstable, thereby threatening seriously railway operation safety. Unfortunately, existing noise barrier inspection methods still rely heavily on manual inspection, which are low-efficiency, subjective and difficult to detect the external structure of noise barriers. To solve these problems, this study proposes an automatic inspection manner for noise barrier using UAV images, and develops a fully convolutional network (FCN)-based noise barrier defect detection approach named skip connection YOLO detection network (SCYNet), which focuses on three aspects: network structure, loss function and data augmentation. First, a skip-connected feature structure Simi-BiFPN is incorporated into the network to fully fuse the features extracted from various scale layers without adding much computational overhead. Second, a NoiseIoU loss for bounding box regression is designed to improve existing IoU-based losses and get better performance on small dataset. Thirdly, a mixed sample data augmentation method named AutoFMix is proposed to eliminate the over-fitting issue caused by excessive similarity between samples, and further improve the detection accuracy. Finally, experiments conducted on the UAV railway noise barrier dataset show that the proposed SCYNet model achieves 92.2 mAP and 78.7 FPS, respectively, which outperform other models in terms of accuracy and processing speed. The fast-processing speed and high detection accuracy can quickly turn UAV images into useful information to assist railway maintenance, thereby improving the safety of train operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZDTT完成签到,获得积分10
52秒前
1分钟前
1分钟前
1分钟前
1分钟前
whichwu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Gigi发布了新的文献求助10
2分钟前
whichwu完成签到,获得积分10
2分钟前
2分钟前
GingerF应助dh采纳,获得60
2分钟前
3分钟前
jarrykim发布了新的文献求助10
3分钟前
WebCasa完成签到,获得积分10
3分钟前
3分钟前
Picopy发布了新的文献求助10
3分钟前
4分钟前
jarrykim完成签到,获得积分10
4分钟前
poohpooh发布了新的文献求助10
4分钟前
4分钟前
poohpooh完成签到,获得积分10
4分钟前
4分钟前
Picopy完成签到,获得积分10
4分钟前
xiaowangwang完成签到 ,获得积分10
5分钟前
5分钟前
赵晨雪完成签到 ,获得积分10
6分钟前
6分钟前
无风风完成签到 ,获得积分10
7分钟前
执着的飞瑶关注了科研通微信公众号
7分钟前
8分钟前
无风完成签到 ,获得积分10
8分钟前
8分钟前
李文达发布了新的文献求助10
8分钟前
汪鸡毛完成签到 ,获得积分10
8分钟前
李文达完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
zyjsunye完成签到 ,获得积分10
8分钟前
暴龙深夜落泪完成签到 ,获得积分10
8分钟前
Owen应助执着的飞瑶采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413296
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122913
捐赠科研通 4445466
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408756