Skip Connection YOLO Architecture for Noise Barrier Defect Detection Using UAV-Based Images in High-Speed Railway

计算机科学 噪音(视频) 最小边界框 架空(工程) 人工智能 卷积神经网络 声屏障 保险丝(电气) 跳跃式监视 实时计算 工程类 降噪 图像(数学) 操作系统 电气工程
作者
Jing Cui,Yong Qin,Yunpeng Wu,Changhong Shao,Huaizhi Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12180-12195 被引量:16
标识
DOI:10.1109/tits.2023.3292934
摘要

Noise barriers play a critical role in reducing noise and preventing foreign object from invading railway. Noise barrier structural defects such as rusted column, deteriorated mortar layer and other damages make its structure unstable, thereby threatening seriously railway operation safety. Unfortunately, existing noise barrier inspection methods still rely heavily on manual inspection, which are low-efficiency, subjective and difficult to detect the external structure of noise barriers. To solve these problems, this study proposes an automatic inspection manner for noise barrier using UAV images, and develops a fully convolutional network (FCN)-based noise barrier defect detection approach named skip connection YOLO detection network (SCYNet), which focuses on three aspects: network structure, loss function and data augmentation. First, a skip-connected feature structure Simi-BiFPN is incorporated into the network to fully fuse the features extracted from various scale layers without adding much computational overhead. Second, a NoiseIoU loss for bounding box regression is designed to improve existing IoU-based losses and get better performance on small dataset. Thirdly, a mixed sample data augmentation method named AutoFMix is proposed to eliminate the over-fitting issue caused by excessive similarity between samples, and further improve the detection accuracy. Finally, experiments conducted on the UAV railway noise barrier dataset show that the proposed SCYNet model achieves 92.2 mAP and 78.7 FPS, respectively, which outperform other models in terms of accuracy and processing speed. The fast-processing speed and high detection accuracy can quickly turn UAV images into useful information to assist railway maintenance, thereby improving the safety of train operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mufcyang完成签到,获得积分10
1秒前
了晨完成签到 ,获得积分10
2秒前
yi完成签到 ,获得积分10
5秒前
wxnice完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
星辰大海应助大橙子采纳,获得10
17秒前
17秒前
七QI完成签到 ,获得积分10
18秒前
21秒前
褚香旋完成签到,获得积分10
21秒前
一只狗东西完成签到 ,获得积分10
23秒前
宇老师发布了新的文献求助10
24秒前
25秒前
qiqi发布了新的文献求助30
27秒前
大橙子发布了新的文献求助10
30秒前
wzhang完成签到,获得积分10
31秒前
ken131完成签到 ,获得积分10
34秒前
myl完成签到,获得积分10
35秒前
728完成签到,获得积分10
41秒前
xiaofeng5838完成签到,获得积分10
41秒前
ronnie完成签到,获得积分10
41秒前
44秒前
寒冷芷蕊完成签到,获得积分20
44秒前
44秒前
Jane完成签到,获得积分10
44秒前
一氧化二氢完成签到,获得积分10
50秒前
凡事发生必有利于我完成签到,获得积分10
51秒前
yihaiqin完成签到 ,获得积分10
55秒前
轩辕剑身完成签到,获得积分0
55秒前
coolkid完成签到 ,获得积分0
56秒前
你怎么那么美完成签到,获得积分10
56秒前
游艺完成签到 ,获得积分10
59秒前
冬月完成签到 ,获得积分10
59秒前
薛乎虚完成签到 ,获得积分10
1分钟前
1分钟前
大胖完成签到,获得积分10
1分钟前
野火197完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
April完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022