Skip Connection YOLO Architecture for Noise Barrier Defect Detection Using UAV-Based Images in High-Speed Railway

计算机科学 噪音(视频) 最小边界框 架空(工程) 人工智能 卷积神经网络 声屏障 保险丝(电气) 跳跃式监视 实时计算 工程类 降噪 图像(数学) 操作系统 电气工程
作者
Jing Cui,Yong Qin,Yunpeng Wu,Changhong Shao,Huaizhi Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12180-12195 被引量:16
标识
DOI:10.1109/tits.2023.3292934
摘要

Noise barriers play a critical role in reducing noise and preventing foreign object from invading railway. Noise barrier structural defects such as rusted column, deteriorated mortar layer and other damages make its structure unstable, thereby threatening seriously railway operation safety. Unfortunately, existing noise barrier inspection methods still rely heavily on manual inspection, which are low-efficiency, subjective and difficult to detect the external structure of noise barriers. To solve these problems, this study proposes an automatic inspection manner for noise barrier using UAV images, and develops a fully convolutional network (FCN)-based noise barrier defect detection approach named skip connection YOLO detection network (SCYNet), which focuses on three aspects: network structure, loss function and data augmentation. First, a skip-connected feature structure Simi-BiFPN is incorporated into the network to fully fuse the features extracted from various scale layers without adding much computational overhead. Second, a NoiseIoU loss for bounding box regression is designed to improve existing IoU-based losses and get better performance on small dataset. Thirdly, a mixed sample data augmentation method named AutoFMix is proposed to eliminate the over-fitting issue caused by excessive similarity between samples, and further improve the detection accuracy. Finally, experiments conducted on the UAV railway noise barrier dataset show that the proposed SCYNet model achieves 92.2 mAP and 78.7 FPS, respectively, which outperform other models in terms of accuracy and processing speed. The fast-processing speed and high detection accuracy can quickly turn UAV images into useful information to assist railway maintenance, thereby improving the safety of train operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Younglee完成签到,获得积分10
1秒前
1秒前
xiaoxuan完成签到,获得积分10
2秒前
3秒前
Garnieta完成签到,获得积分10
4秒前
彤光赫显发布了新的文献求助10
5秒前
5秒前
浔城游侠完成签到,获得积分10
6秒前
6秒前
失眠的板栗完成签到,获得积分10
7秒前
蝶步韶华发布了新的文献求助10
9秒前
Jay发布了新的文献求助10
9秒前
jbhb发布了新的文献求助10
11秒前
幸运星发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
17秒前
小王完成签到 ,获得积分10
20秒前
liuyunhao7207发布了新的文献求助10
20秒前
Nugget发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
23秒前
蝶步韶华完成签到,获得积分10
23秒前
SciGPT应助wade采纳,获得10
25秒前
稳重水卉完成签到,获得积分10
28秒前
我是老大应助111采纳,获得10
29秒前
31秒前
情怀应助天真的高山采纳,获得10
32秒前
万能图书馆应助高木采纳,获得10
33秒前
积极以云完成签到,获得积分10
34秒前
34秒前
36秒前
CyrusSo524应助zzz采纳,获得10
37秒前
123完成签到,获得积分10
38秒前
兔子先生完成签到 ,获得积分10
39秒前
向日葵完成签到,获得积分10
41秒前
科研通AI5应助天天采纳,获得10
41秒前
彤光赫显完成签到,获得积分10
43秒前
long0809完成签到,获得积分10
46秒前
天天快乐应助段一帆采纳,获得10
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174