Skip Connection YOLO Architecture for Noise Barrier Defect Detection Using UAV-Based Images in High-Speed Railway

计算机科学 噪音(视频) 最小边界框 架空(工程) 人工智能 卷积神经网络 声屏障 保险丝(电气) 实时计算 工程类 降噪 图像(数学) 操作系统 电气工程
作者
Jing Cui,Yong Qin,Yunpeng Wu,Changhong Shao,Huaizhi Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12180-12195 被引量:11
标识
DOI:10.1109/tits.2023.3292934
摘要

Noise barriers play a critical role in reducing noise and preventing foreign object from invading railway. Noise barrier structural defects such as rusted column, deteriorated mortar layer and other damages make its structure unstable, thereby threatening seriously railway operation safety. Unfortunately, existing noise barrier inspection methods still rely heavily on manual inspection, which are low-efficiency, subjective and difficult to detect the external structure of noise barriers. To solve these problems, this study proposes an automatic inspection manner for noise barrier using UAV images, and develops a fully convolutional network (FCN)-based noise barrier defect detection approach named skip connection YOLO detection network (SCYNet), which focuses on three aspects: network structure, loss function and data augmentation. First, a skip-connected feature structure Simi-BiFPN is incorporated into the network to fully fuse the features extracted from various scale layers without adding much computational overhead. Second, a NoiseIoU loss for bounding box regression is designed to improve existing IoU-based losses and get better performance on small dataset. Thirdly, a mixed sample data augmentation method named AutoFMix is proposed to eliminate the over-fitting issue caused by excessive similarity between samples, and further improve the detection accuracy. Finally, experiments conducted on the UAV railway noise barrier dataset show that the proposed SCYNet model achieves 92.2 mAP and 78.7 FPS, respectively, which outperform other models in terms of accuracy and processing speed. The fast-processing speed and high detection accuracy can quickly turn UAV images into useful information to assist railway maintenance, thereby improving the safety of train operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼头完成签到,获得积分10
刚刚
闪闪的小珍完成签到,获得积分10
刚刚
欧阳发布了新的文献求助10
刚刚
zzj1996完成签到,获得积分10
1秒前
追寻绮玉发布了新的文献求助10
2秒前
慧慧发布了新的文献求助10
2秒前
3秒前
zyy621发布了新的文献求助10
3秒前
Hello应助霏冉采纳,获得10
4秒前
Ricky小强发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
琦风风发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
汉堡包应助天地一体采纳,获得10
8秒前
TongMan发布了新的文献求助30
8秒前
狄百招发布了新的文献求助30
9秒前
Orange应助李晨源采纳,获得10
9秒前
weiwei发布了新的文献求助10
10秒前
zyy621完成签到,获得积分10
10秒前
无花果应助Catalysis123采纳,获得10
10秒前
苞谷完成签到,获得积分10
12秒前
StevenZhao发布了新的文献求助10
12秒前
12秒前
三三发布了新的文献求助40
13秒前
zhangzhang发布了新的文献求助10
13秒前
伶俐的易云完成签到,获得积分10
13秒前
cell完成签到,获得积分20
13秒前
14秒前
追寻绮玉完成签到,获得积分10
15秒前
2:38am发布了新的文献求助10
15秒前
15秒前
16秒前
陈玉玲应助冷傲的夜香采纳,获得10
16秒前
wang发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125080
求助须知:如何正确求助?哪些是违规求助? 2775384
关于积分的说明 7726510
捐赠科研通 2430943
什么是DOI,文献DOI怎么找? 1291531
科研通“疑难数据库(出版商)”最低求助积分说明 622169
版权声明 600352