亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Skip Connection YOLO Architecture for Noise Barrier Defect Detection Using UAV-Based Images in High-Speed Railway

计算机科学 噪音(视频) 最小边界框 架空(工程) 人工智能 卷积神经网络 声屏障 保险丝(电气) 跳跃式监视 实时计算 工程类 降噪 图像(数学) 操作系统 电气工程
作者
Jing Cui,Yong Qin,Yunpeng Wu,Changhong Shao,Huaizhi Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12180-12195 被引量:21
标识
DOI:10.1109/tits.2023.3292934
摘要

Noise barriers play a critical role in reducing noise and preventing foreign object from invading railway. Noise barrier structural defects such as rusted column, deteriorated mortar layer and other damages make its structure unstable, thereby threatening seriously railway operation safety. Unfortunately, existing noise barrier inspection methods still rely heavily on manual inspection, which are low-efficiency, subjective and difficult to detect the external structure of noise barriers. To solve these problems, this study proposes an automatic inspection manner for noise barrier using UAV images, and develops a fully convolutional network (FCN)-based noise barrier defect detection approach named skip connection YOLO detection network (SCYNet), which focuses on three aspects: network structure, loss function and data augmentation. First, a skip-connected feature structure Simi-BiFPN is incorporated into the network to fully fuse the features extracted from various scale layers without adding much computational overhead. Second, a NoiseIoU loss for bounding box regression is designed to improve existing IoU-based losses and get better performance on small dataset. Thirdly, a mixed sample data augmentation method named AutoFMix is proposed to eliminate the over-fitting issue caused by excessive similarity between samples, and further improve the detection accuracy. Finally, experiments conducted on the UAV railway noise barrier dataset show that the proposed SCYNet model achieves 92.2 mAP and 78.7 FPS, respectively, which outperform other models in terms of accuracy and processing speed. The fast-processing speed and high detection accuracy can quickly turn UAV images into useful information to assist railway maintenance, thereby improving the safety of train operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
5秒前
Yan1961发布了新的文献求助10
6秒前
明亮的代灵完成签到 ,获得积分10
7秒前
雨下听风发布了新的文献求助10
10秒前
乐乐应助Yan1961采纳,获得10
12秒前
17秒前
23秒前
30秒前
32秒前
hjy发布了新的文献求助10
36秒前
Yan1961发布了新的文献求助10
39秒前
谢花花完成签到 ,获得积分10
42秒前
51秒前
李爱国应助雨下听风采纳,获得10
54秒前
传奇3应助谦让的思枫采纳,获得10
1分钟前
HUO完成签到 ,获得积分10
1分钟前
zs完成签到 ,获得积分10
1分钟前
1分钟前
追寻元菱应助科研通管家采纳,获得10
1分钟前
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
追寻元菱应助科研通管家采纳,获得10
1分钟前
Gideon完成签到,获得积分10
1分钟前
HZY发布了新的文献求助10
1分钟前
科研通AI6应助窝恁叠采纳,获得10
1分钟前
TIDUS完成签到,获得积分10
1分钟前
1分钟前
微笑发布了新的文献求助10
1分钟前
笨笨曲奇发布了新的文献求助10
1分钟前
TIDUS完成签到,获得积分10
1分钟前
领导范儿应助HZY采纳,获得10
1分钟前
1分钟前
1分钟前
王皮皮完成签到 ,获得积分10
1分钟前
MchemG完成签到,获得积分0
1分钟前
firmalter发布了新的文献求助10
1分钟前
a36380382完成签到,获得积分10
1分钟前
xq应助淡然盈采纳,获得10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232369
求助须知:如何正确求助?哪些是违规求助? 4401711
关于积分的说明 13699246
捐赠科研通 4268071
什么是DOI,文献DOI怎么找? 2342269
邀请新用户注册赠送积分活动 1339354
关于科研通互助平台的介绍 1295951