Skip Connection YOLO Architecture for Noise Barrier Defect Detection Using UAV-Based Images in High-Speed Railway

计算机科学 噪音(视频) 最小边界框 架空(工程) 人工智能 卷积神经网络 声屏障 保险丝(电气) 跳跃式监视 实时计算 工程类 降噪 图像(数学) 操作系统 电气工程
作者
Jing Cui,Yong Qin,Yunpeng Wu,Changhong Shao,Huaizhi Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12180-12195 被引量:21
标识
DOI:10.1109/tits.2023.3292934
摘要

Noise barriers play a critical role in reducing noise and preventing foreign object from invading railway. Noise barrier structural defects such as rusted column, deteriorated mortar layer and other damages make its structure unstable, thereby threatening seriously railway operation safety. Unfortunately, existing noise barrier inspection methods still rely heavily on manual inspection, which are low-efficiency, subjective and difficult to detect the external structure of noise barriers. To solve these problems, this study proposes an automatic inspection manner for noise barrier using UAV images, and develops a fully convolutional network (FCN)-based noise barrier defect detection approach named skip connection YOLO detection network (SCYNet), which focuses on three aspects: network structure, loss function and data augmentation. First, a skip-connected feature structure Simi-BiFPN is incorporated into the network to fully fuse the features extracted from various scale layers without adding much computational overhead. Second, a NoiseIoU loss for bounding box regression is designed to improve existing IoU-based losses and get better performance on small dataset. Thirdly, a mixed sample data augmentation method named AutoFMix is proposed to eliminate the over-fitting issue caused by excessive similarity between samples, and further improve the detection accuracy. Finally, experiments conducted on the UAV railway noise barrier dataset show that the proposed SCYNet model achieves 92.2 mAP and 78.7 FPS, respectively, which outperform other models in terms of accuracy and processing speed. The fast-processing speed and high detection accuracy can quickly turn UAV images into useful information to assist railway maintenance, thereby improving the safety of train operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
莽哥发布了新的文献求助10
2秒前
momo完成签到,获得积分10
2秒前
2秒前
端庄的晓山完成签到,获得积分10
4秒前
Jerry20184完成签到 ,获得积分10
4秒前
5秒前
子南发布了新的文献求助10
6秒前
6秒前
lichanshen完成签到,获得积分10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
传奇3应助信仰采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
8秒前
fighting应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
Maestro_S发布了新的文献求助10
8秒前
田様应助科研通管家采纳,获得30
8秒前
李健应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
可爱的函函应助民族风采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363