Gastrointestinal Endoscopic Image Classification using a Novel Wavelet Decomposition Based Deep Learning Algorithm

人工智能 卷积神经网络 计算机科学 小波 图像处理 模式识别(心理学) 上下文图像分类 深度学习 计算机视觉 图像(数学)
作者
Ankita Sethi,Shivam Damani,Arshia Sethi,Anjali Rajagopal,Keerthy Gopalakrishnan,Akhila Sai Sree Cherukuri,Shivaram P. Arunachalam
标识
DOI:10.1109/eit57321.2023.10187226
摘要

More than 11% of Americans are affected by diseases related to the gastrointestinal (GI) tract. GI endoscopy is an established imaging modality for diagnostic and therapeutic procedures. Large volumes of images and videos generated during this procedure, makes image interpretation cumbersome and varies among physicians. Artificial intelligence (AI) assisted Computer-Aided Diagnosis (CAD) system for digital GI endoscopy is gaining attention that can disrupt GI practice. Several studies have reported the application of computer vision and machine learning algorithms in GI endoscopy. Endoscopic images of varying anatomic features of the Gi tract, challenges their accurate classification. Therefore, a need exists in accurately classifying different GI endoscopic images for upstream processing in the diagnostic platform for digital GI endoscopy. The purpose of this work was to develop a deep learning model using convolutional neural network (CNN) and wavelet decomposed CNN for improved accuracy using publically available GI endoscopic images from Kvasir dataset with 8 different image groups namely Z-line, Pylorus, Cecum, Esophagitis, Polyps, Ulcerative Colitis, Dyed and Lifted Polyps & Dyed Resection Margins. Wavelet decomposition along with CNN architecture allows utilization of spectral information which is mostly lost in conventional CNNs that can enhance model performance. The models were trained with 80% images and 20% were used for testing and accuracy was compared. 10% improvement in accuracy for multi-class classification was observed with wavelet CNN model compared to conventional CNN. The results indicate the potential of image decomposition methods for enhancing digital GI endoscopic procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西完成签到,获得积分10
刚刚
刚刚
勤奋的凌翠完成签到 ,获得积分10
1秒前
xiaowang发布了新的文献求助10
2秒前
冷傲书萱应助YDL采纳,获得10
3秒前
3秒前
传奇3应助JJMM采纳,获得10
5秒前
6秒前
大个应助Wu采纳,获得10
8秒前
靓丽幻梅发布了新的文献求助10
9秒前
元小夏完成签到,获得积分0
9秒前
帅的人完成签到,获得积分10
10秒前
浮浮世世发布了新的文献求助10
10秒前
xiaowang完成签到,获得积分10
10秒前
11秒前
11秒前
CHBW完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
李爱国应助llll采纳,获得10
13秒前
13秒前
14秒前
CHBW发布了新的文献求助150
15秒前
cyhccc发布了新的文献求助10
16秒前
paltahun发布了新的文献求助10
16秒前
16秒前
17秒前
bendanzxx发布了新的文献求助10
19秒前
Wu发布了新的文献求助10
19秒前
浮游应助积极的凌波采纳,获得10
20秒前
wyy发布了新的文献求助30
21秒前
23秒前
24秒前
科研通AI2S应助Wu采纳,获得10
24秒前
25秒前
25秒前
25秒前
烟花应助伶俐乌采纳,获得10
26秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4915038
求助须知:如何正确求助?哪些是违规求助? 4189167
关于积分的说明 13010035
捐赠科研通 3958176
什么是DOI,文献DOI怎么找? 2170103
邀请新用户注册赠送积分活动 1188349
关于科研通互助平台的介绍 1096077