Gastrointestinal Endoscopic Image Classification using a Novel Wavelet Decomposition Based Deep Learning Algorithm

人工智能 卷积神经网络 计算机科学 小波 图像处理 模式识别(心理学) 上下文图像分类 深度学习 计算机视觉 图像(数学)
作者
Ankita Sethi,Shivam Damani,Arshia Sethi,Anjali Rajagopal,Keerthy Gopalakrishnan,Akhila Sai Sree Cherukuri,Shivaram P. Arunachalam
标识
DOI:10.1109/eit57321.2023.10187226
摘要

More than 11% of Americans are affected by diseases related to the gastrointestinal (GI) tract. GI endoscopy is an established imaging modality for diagnostic and therapeutic procedures. Large volumes of images and videos generated during this procedure, makes image interpretation cumbersome and varies among physicians. Artificial intelligence (AI) assisted Computer-Aided Diagnosis (CAD) system for digital GI endoscopy is gaining attention that can disrupt GI practice. Several studies have reported the application of computer vision and machine learning algorithms in GI endoscopy. Endoscopic images of varying anatomic features of the Gi tract, challenges their accurate classification. Therefore, a need exists in accurately classifying different GI endoscopic images for upstream processing in the diagnostic platform for digital GI endoscopy. The purpose of this work was to develop a deep learning model using convolutional neural network (CNN) and wavelet decomposed CNN for improved accuracy using publically available GI endoscopic images from Kvasir dataset with 8 different image groups namely Z-line, Pylorus, Cecum, Esophagitis, Polyps, Ulcerative Colitis, Dyed and Lifted Polyps & Dyed Resection Margins. Wavelet decomposition along with CNN architecture allows utilization of spectral information which is mostly lost in conventional CNNs that can enhance model performance. The models were trained with 80% images and 20% were used for testing and accuracy was compared. 10% improvement in accuracy for multi-class classification was observed with wavelet CNN model compared to conventional CNN. The results indicate the potential of image decomposition methods for enhancing digital GI endoscopic procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助善良的静柏采纳,获得10
刚刚
上官若男应助yc采纳,获得10
刚刚
妥妥酱完成签到,获得积分10
1秒前
dzc完成签到,获得积分10
2秒前
yk发布了新的文献求助10
5秒前
胜男完成签到,获得积分10
5秒前
6秒前
6秒前
DiH完成签到,获得积分10
6秒前
7秒前
明天不熬夜完成签到,获得积分10
8秒前
郭泓嵩完成签到,获得积分10
9秒前
9秒前
9秒前
樱桃小贩完成签到,获得积分0
10秒前
苹果发夹完成签到 ,获得积分10
11秒前
11秒前
张胡星发布了新的文献求助10
12秒前
13秒前
赘婿应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
wy.he应助科研通管家采纳,获得20
14秒前
14秒前
14秒前
PU聚氨酯完成签到,获得积分10
15秒前
小耿完成签到,获得积分20
16秒前
科研通AI5应助怪味痘采纳,获得10
16秒前
17秒前
Elvin2527给Elvin2527的求助进行了留言
18秒前
量子星尘发布了新的文献求助10
20秒前
机智的乌发布了新的文献求助10
20秒前
RJ完成签到,获得积分10
21秒前
22秒前
23秒前
神秘玩家完成签到 ,获得积分10
25秒前
小鲨鱼发布了新的文献求助10
25秒前
CipherSage应助li199624采纳,获得10
26秒前
Lny应助max采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574269
求助须知:如何正确求助?哪些是违规求助? 3994309
关于积分的说明 12365141
捐赠科研通 3667553
什么是DOI,文献DOI怎么找? 2021284
邀请新用户注册赠送积分活动 1055423
科研通“疑难数据库(出版商)”最低求助积分说明 942833