Gastrointestinal Endoscopic Image Classification using a Novel Wavelet Decomposition Based Deep Learning Algorithm

人工智能 卷积神经网络 计算机科学 小波 图像处理 模式识别(心理学) 上下文图像分类 深度学习 计算机视觉 图像(数学)
作者
Ankita Sethi,Shivam Damani,Arshia Sethi,Anjali Rajagopal,Keerthy Gopalakrishnan,Akhila Sai Sree Cherukuri,Shivaram P. Arunachalam
标识
DOI:10.1109/eit57321.2023.10187226
摘要

More than 11% of Americans are affected by diseases related to the gastrointestinal (GI) tract. GI endoscopy is an established imaging modality for diagnostic and therapeutic procedures. Large volumes of images and videos generated during this procedure, makes image interpretation cumbersome and varies among physicians. Artificial intelligence (AI) assisted Computer-Aided Diagnosis (CAD) system for digital GI endoscopy is gaining attention that can disrupt GI practice. Several studies have reported the application of computer vision and machine learning algorithms in GI endoscopy. Endoscopic images of varying anatomic features of the Gi tract, challenges their accurate classification. Therefore, a need exists in accurately classifying different GI endoscopic images for upstream processing in the diagnostic platform for digital GI endoscopy. The purpose of this work was to develop a deep learning model using convolutional neural network (CNN) and wavelet decomposed CNN for improved accuracy using publically available GI endoscopic images from Kvasir dataset with 8 different image groups namely Z-line, Pylorus, Cecum, Esophagitis, Polyps, Ulcerative Colitis, Dyed and Lifted Polyps & Dyed Resection Margins. Wavelet decomposition along with CNN architecture allows utilization of spectral information which is mostly lost in conventional CNNs that can enhance model performance. The models were trained with 80% images and 20% were used for testing and accuracy was compared. 10% improvement in accuracy for multi-class classification was observed with wavelet CNN model compared to conventional CNN. The results indicate the potential of image decomposition methods for enhancing digital GI endoscopic procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王小丹完成签到,获得积分10
刚刚
赘婿应助而非哈随哈桑采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
哈哈发布了新的文献求助10
1秒前
爆爆完成签到,获得积分10
1秒前
11111完成签到,获得积分20
1秒前
Jasper应助冷静白亦采纳,获得10
2秒前
拉普拉斯妖完成签到,获得积分10
3秒前
谢志超发布了新的文献求助10
4秒前
13981592626发布了新的文献求助10
5秒前
13981592626发布了新的文献求助10
5秒前
13981592626发布了新的文献求助10
5秒前
13981592626发布了新的文献求助10
5秒前
零零发布了新的文献求助10
6秒前
mirror关注了科研通微信公众号
8秒前
9秒前
调皮小蘑菇完成签到,获得积分10
12秒前
谢志超完成签到,获得积分10
12秒前
谢鸿宇完成签到,获得积分10
14秒前
14秒前
玺白白发布了新的文献求助10
14秒前
科研通AI5应助soyorin采纳,获得10
14秒前
15秒前
15秒前
18秒前
yy应助爱听歌的书双采纳,获得10
18秒前
科研通AI5应助迅速的鸽子采纳,获得10
18秒前
COCONUT完成签到,获得积分10
19秒前
DS发布了新的文献求助10
19秒前
隐形的谷槐完成签到 ,获得积分10
20秒前
llll发布了新的文献求助10
21秒前
lwt完成签到,获得积分20
22秒前
义气千风完成签到,获得积分10
22秒前
壮观安寒完成签到 ,获得积分10
23秒前
充电宝应助HP采纳,获得20
23秒前
所所应助执着的导师采纳,获得10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133459
求助须知:如何正确求助?哪些是违规求助? 4334575
关于积分的说明 13504156
捐赠科研通 4171584
什么是DOI,文献DOI怎么找? 2287247
邀请新用户注册赠送积分活动 1288151
关于科研通互助平台的介绍 1228995