Gastrointestinal Endoscopic Image Classification using a Novel Wavelet Decomposition Based Deep Learning Algorithm

人工智能 卷积神经网络 计算机科学 小波 图像处理 模式识别(心理学) 上下文图像分类 深度学习 计算机视觉 图像(数学)
作者
Ankita Sethi,Shivam Damani,Arshia Sethi,Anjali Rajagopal,Keerthy Gopalakrishnan,Akhila Sai Sree Cherukuri,Shivaram P. Arunachalam
标识
DOI:10.1109/eit57321.2023.10187226
摘要

More than 11% of Americans are affected by diseases related to the gastrointestinal (GI) tract. GI endoscopy is an established imaging modality for diagnostic and therapeutic procedures. Large volumes of images and videos generated during this procedure, makes image interpretation cumbersome and varies among physicians. Artificial intelligence (AI) assisted Computer-Aided Diagnosis (CAD) system for digital GI endoscopy is gaining attention that can disrupt GI practice. Several studies have reported the application of computer vision and machine learning algorithms in GI endoscopy. Endoscopic images of varying anatomic features of the Gi tract, challenges their accurate classification. Therefore, a need exists in accurately classifying different GI endoscopic images for upstream processing in the diagnostic platform for digital GI endoscopy. The purpose of this work was to develop a deep learning model using convolutional neural network (CNN) and wavelet decomposed CNN for improved accuracy using publically available GI endoscopic images from Kvasir dataset with 8 different image groups namely Z-line, Pylorus, Cecum, Esophagitis, Polyps, Ulcerative Colitis, Dyed and Lifted Polyps & Dyed Resection Margins. Wavelet decomposition along with CNN architecture allows utilization of spectral information which is mostly lost in conventional CNNs that can enhance model performance. The models were trained with 80% images and 20% were used for testing and accuracy was compared. 10% improvement in accuracy for multi-class classification was observed with wavelet CNN model compared to conventional CNN. The results indicate the potential of image decomposition methods for enhancing digital GI endoscopic procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小乐子完成签到,获得积分10
刚刚
1秒前
炖地瓜发布了新的文献求助10
2秒前
小混分怪完成签到,获得积分10
2秒前
3秒前
123完成签到,获得积分10
3秒前
hgh发布了新的文献求助10
3秒前
Hello应助tutu采纳,获得10
4秒前
5秒前
HaorenQ发布了新的文献求助10
6秒前
自然听寒完成签到,获得积分10
6秒前
大锤完成签到,获得积分10
7秒前
会飞的小猪完成签到,获得积分0
7秒前
小巧的映菡完成签到,获得积分20
8秒前
LHP完成签到,获得积分10
8秒前
科研通AI2S应助xzy采纳,获得10
9秒前
10秒前
lourahan发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
FashionBoy应助韦远侵采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
15秒前
李健应助科研通管家采纳,获得10
15秒前
南瓜难应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得30
15秒前
昔年发布了新的文献求助10
17秒前
18秒前
花花完成签到,获得积分10
20秒前
Andres12138完成签到,获得积分10
21秒前
可爱蓝天发布了新的文献求助10
21秒前
CodeCraft应助qhy123采纳,获得10
21秒前
22秒前
23秒前
xzy发布了新的文献求助10
23秒前
EY发布了新的文献求助20
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157866
求助须知:如何正确求助?哪些是违规求助? 2809202
关于积分的说明 7880857
捐赠科研通 2467704
什么是DOI,文献DOI怎么找? 1313664
科研通“疑难数据库(出版商)”最低求助积分说明 630476
版权声明 601943