Gastrointestinal Endoscopic Image Classification using a Novel Wavelet Decomposition Based Deep Learning Algorithm

人工智能 卷积神经网络 计算机科学 小波 图像处理 模式识别(心理学) 上下文图像分类 深度学习 计算机视觉 图像(数学)
作者
Ankita Sethi,Shivam Damani,Arshia Sethi,Anjali Rajagopal,Keerthy Gopalakrishnan,Akhila Sai Sree Cherukuri,Shivaram P. Arunachalam
标识
DOI:10.1109/eit57321.2023.10187226
摘要

More than 11% of Americans are affected by diseases related to the gastrointestinal (GI) tract. GI endoscopy is an established imaging modality for diagnostic and therapeutic procedures. Large volumes of images and videos generated during this procedure, makes image interpretation cumbersome and varies among physicians. Artificial intelligence (AI) assisted Computer-Aided Diagnosis (CAD) system for digital GI endoscopy is gaining attention that can disrupt GI practice. Several studies have reported the application of computer vision and machine learning algorithms in GI endoscopy. Endoscopic images of varying anatomic features of the Gi tract, challenges their accurate classification. Therefore, a need exists in accurately classifying different GI endoscopic images for upstream processing in the diagnostic platform for digital GI endoscopy. The purpose of this work was to develop a deep learning model using convolutional neural network (CNN) and wavelet decomposed CNN for improved accuracy using publically available GI endoscopic images from Kvasir dataset with 8 different image groups namely Z-line, Pylorus, Cecum, Esophagitis, Polyps, Ulcerative Colitis, Dyed and Lifted Polyps & Dyed Resection Margins. Wavelet decomposition along with CNN architecture allows utilization of spectral information which is mostly lost in conventional CNNs that can enhance model performance. The models were trained with 80% images and 20% were used for testing and accuracy was compared. 10% improvement in accuracy for multi-class classification was observed with wavelet CNN model compared to conventional CNN. The results indicate the potential of image decomposition methods for enhancing digital GI endoscopic procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神仙也抠脚丫完成签到,获得积分10
刚刚
jessia完成签到,获得积分10
刚刚
刚刚
2秒前
缥缈的凝海完成签到,获得积分10
2秒前
一期一会完成签到,获得积分10
2秒前
lll发布了新的文献求助10
2秒前
格子发布了新的文献求助10
2秒前
MoL完成签到,获得积分10
3秒前
战战欧巴发布了新的文献求助10
3秒前
JoJo发布了新的文献求助10
4秒前
无花果应助何姗悦采纳,获得10
5秒前
5秒前
jianmin发布了新的文献求助20
5秒前
6秒前
lbl发布了新的文献求助10
6秒前
欢喜发布了新的文献求助10
6秒前
AidenHelix完成签到,获得积分10
6秒前
西门灵薇完成签到,获得积分10
7秒前
无聊的爆米花完成签到,获得积分10
8秒前
kohu发布了新的文献求助10
9秒前
压力小子发布了新的文献求助50
9秒前
ZHU关闭了ZHU文献求助
9秒前
酷波er应助斯文的斩采纳,获得10
10秒前
happpy完成签到,获得积分10
10秒前
10秒前
橙子发布了新的文献求助10
10秒前
赢ok关注了科研通微信公众号
10秒前
流水应助子桑采纳,获得10
11秒前
李爱国应助可可西里采纳,获得10
11秒前
小二郎应助zzyyy采纳,获得10
11秒前
11秒前
12秒前
FashionBoy应助AidenHelix采纳,获得10
12秒前
12秒前
3189完成签到 ,获得积分10
13秒前
14秒前
科研通AI2S应助调皮的西装采纳,获得10
14秒前
TMY发布了新的文献求助10
15秒前
有魅力的白莲完成签到,获得积分20
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771