Gastrointestinal Endoscopic Image Classification using a Novel Wavelet Decomposition Based Deep Learning Algorithm

人工智能 卷积神经网络 计算机科学 小波 图像处理 模式识别(心理学) 上下文图像分类 深度学习 计算机视觉 图像(数学)
作者
Ankita Sethi,Shivam Damani,Arshia Sethi,Anjali Rajagopal,Keerthy Gopalakrishnan,Akhila Sai Sree Cherukuri,Shivaram P. Arunachalam
标识
DOI:10.1109/eit57321.2023.10187226
摘要

More than 11% of Americans are affected by diseases related to the gastrointestinal (GI) tract. GI endoscopy is an established imaging modality for diagnostic and therapeutic procedures. Large volumes of images and videos generated during this procedure, makes image interpretation cumbersome and varies among physicians. Artificial intelligence (AI) assisted Computer-Aided Diagnosis (CAD) system for digital GI endoscopy is gaining attention that can disrupt GI practice. Several studies have reported the application of computer vision and machine learning algorithms in GI endoscopy. Endoscopic images of varying anatomic features of the Gi tract, challenges their accurate classification. Therefore, a need exists in accurately classifying different GI endoscopic images for upstream processing in the diagnostic platform for digital GI endoscopy. The purpose of this work was to develop a deep learning model using convolutional neural network (CNN) and wavelet decomposed CNN for improved accuracy using publically available GI endoscopic images from Kvasir dataset with 8 different image groups namely Z-line, Pylorus, Cecum, Esophagitis, Polyps, Ulcerative Colitis, Dyed and Lifted Polyps & Dyed Resection Margins. Wavelet decomposition along with CNN architecture allows utilization of spectral information which is mostly lost in conventional CNNs that can enhance model performance. The models were trained with 80% images and 20% were used for testing and accuracy was compared. 10% improvement in accuracy for multi-class classification was observed with wavelet CNN model compared to conventional CNN. The results indicate the potential of image decomposition methods for enhancing digital GI endoscopic procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晨曦完成签到 ,获得积分10
刚刚
刚刚
Kiki发布了新的文献求助10
刚刚
加缪完成签到,获得积分0
1秒前
1秒前
丘比特应助小李呀采纳,获得10
1秒前
1秒前
1秒前
崔崔崔发布了新的文献求助10
1秒前
Ryan完成签到,获得积分10
1秒前
赫幼蓉发布了新的文献求助10
2秒前
默默发布了新的文献求助10
2秒前
JamesPei应助懵懂的映菱采纳,获得10
2秒前
科研通AI5应助吕万鹏采纳,获得10
3秒前
aa完成签到,获得积分10
3秒前
彭于晏应助WL采纳,获得20
4秒前
迷路灵槐发布了新的文献求助10
5秒前
yangdann发布了新的文献求助10
6秒前
DVD完成签到 ,获得积分10
7秒前
刘洋完成签到,获得积分10
7秒前
小张呢好完成签到 ,获得积分10
10秒前
13秒前
13秒前
脑洞疼应助曹骏轩采纳,获得10
14秒前
meng发布了新的文献求助10
14秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
懵懂的映菱完成签到,获得积分10
15秒前
15秒前
英姑应助科研通管家采纳,获得10
15秒前
15秒前
Maston应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
15秒前
ding应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
Lucas应助容止采纳,获得10
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652