Reinforcement Learning based Tree Decomposition for Distance Querying in Road Networks

计算机科学 强化学习 树(集合论) 马尔可夫决策过程 启发式 加速 架空(工程) 理论计算机科学 人工智能 马尔可夫过程 数学 并行计算 数学分析 统计 操作系统
作者
Bolong Zheng,Yan Ma,Jingyi Wan,Yongyong Gao,Kai Huang,Xiaofang Zhou,Christian S. Jensen
标识
DOI:10.1109/icde55515.2023.00132
摘要

Computing the shortest path distance between two vertices in a road network is a building block in numerous applications. To do so efficiently, the state-of-the-art proposals adopt a tree decomposition process with heuristic strategies to build 2-hop label indexes. However, these indexes suffer from large space overheads caused by either tree imbalance or a large tree height. Independently of this, reinforcement learning has recently show impressive performance at sequential decision making in spatial data management tasks. We observe that tree decomposition is naturally a sequential decision making problem that decides which vertex to process at each step. In this paper, we propose a reinforcement learning based tree decomposition (RLTD) approach that reduces the space overhead significantly. We model tree decomposition as a Markov Decision Process, exploiting features of both the network topological structure and the tree structure. We further optimize the tree decomposition process by taking the network density into account, which yields a great generalization of the model on large road networks. Extensive experiments with real-world data offer insights into the performance of the proposals, showing that they are able to reduce the space overhead by about 51% and achieve on average about 14% speedup for queries with almost the same preprocessing time when compared with the state-of-the-art proposals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Binbin发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
6秒前
花城完成签到,获得积分10
7秒前
7秒前
8秒前
666888完成签到,获得积分10
8秒前
熙原发布了新的文献求助10
9秒前
文舒发布了新的文献求助10
10秒前
FKVB_完成签到 ,获得积分10
11秒前
41发布了新的文献求助10
12秒前
12秒前
14秒前
大元子应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得30
14秒前
邓佳鑫Alan应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
TYMY应助科研通管家采纳,获得30
14秒前
聪明蛋挞应助科研通管家采纳,获得10
15秒前
邓佳鑫Alan应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
邓佳鑫Alan应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
邓佳鑫Alan应助科研通管家采纳,获得10
15秒前
邓佳鑫Alan应助科研通管家采纳,获得10
15秒前
邓佳鑫Alan应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
大元子应助科研通管家采纳,获得10
16秒前
l1844852731应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得20
16秒前
Sally应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
xu1227应助科研通管家采纳,获得20
16秒前
Hello应助哈哈哈采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740