Reinforcement Learning based Tree Decomposition for Distance Querying in Road Networks

计算机科学 强化学习 树(集合论) 马尔可夫决策过程 启发式 加速 架空(工程) 理论计算机科学 人工智能 马尔可夫过程 数学 并行计算 数学分析 统计 操作系统
作者
Bolong Zheng,Yan Ma,Jingyi Wan,Yongyong Gao,Kai Huang,Xiaofang Zhou,Christian S. Jensen
标识
DOI:10.1109/icde55515.2023.00132
摘要

Computing the shortest path distance between two vertices in a road network is a building block in numerous applications. To do so efficiently, the state-of-the-art proposals adopt a tree decomposition process with heuristic strategies to build 2-hop label indexes. However, these indexes suffer from large space overheads caused by either tree imbalance or a large tree height. Independently of this, reinforcement learning has recently show impressive performance at sequential decision making in spatial data management tasks. We observe that tree decomposition is naturally a sequential decision making problem that decides which vertex to process at each step. In this paper, we propose a reinforcement learning based tree decomposition (RLTD) approach that reduces the space overhead significantly. We model tree decomposition as a Markov Decision Process, exploiting features of both the network topological structure and the tree structure. We further optimize the tree decomposition process by taking the network density into account, which yields a great generalization of the model on large road networks. Extensive experiments with real-world data offer insights into the performance of the proposals, showing that they are able to reduce the space overhead by about 51% and achieve on average about 14% speedup for queries with almost the same preprocessing time when compared with the state-of-the-art proposals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨桐关注了科研通微信公众号
1秒前
2秒前
2秒前
2秒前
尔信完成签到 ,获得积分10
2秒前
年轻思山发布了新的文献求助40
2秒前
风枞完成签到 ,获得积分10
3秒前
丘比特应助汤米bb采纳,获得10
4秒前
丘比特应助陶醉发箍采纳,获得10
7秒前
闪闪千兰发布了新的文献求助10
8秒前
10秒前
邱夫斯基发布了新的文献求助20
10秒前
华仔应助小王采纳,获得10
11秒前
xyf发布了新的文献求助20
11秒前
12秒前
舒适斑马完成签到,获得积分10
12秒前
13秒前
13秒前
畅快毒娘完成签到,获得积分20
13秒前
15秒前
15秒前
赘婿应助尊敬的芷卉采纳,获得10
16秒前
逐梦ing完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
易安发布了新的文献求助10
18秒前
舒适斑马发布了新的文献求助10
19秒前
畅快毒娘发布了新的文献求助30
19秒前
20秒前
Singularity应助薛雨佳采纳,获得10
21秒前
天天快乐应助醒醒采纳,获得10
22秒前
小王发布了新的文献求助10
23秒前
23秒前
24秒前
千寻发布了新的文献求助10
25秒前
25秒前
科研通AI5应助1222采纳,获得20
28秒前
dongguoxia发布了新的文献求助10
29秒前
小菜鸡发布了新的文献求助10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769687
求助须知:如何正确求助?哪些是违规求助? 3314764
关于积分的说明 10173625
捐赠科研通 3030095
什么是DOI,文献DOI怎么找? 1662612
邀请新用户注册赠送积分活动 795054
科研通“疑难数据库(出版商)”最低求助积分说明 756519