Reinforcement Learning based Tree Decomposition for Distance Querying in Road Networks

计算机科学 强化学习 树(集合论) 马尔可夫决策过程 启发式 加速 架空(工程) 理论计算机科学 人工智能 马尔可夫过程 数学 并行计算 数学分析 统计 操作系统
作者
Bolong Zheng,Yan Ma,Jingyi Wan,Yongyong Gao,Kai Huang,Xiaofang Zhou,Christian S. Jensen
标识
DOI:10.1109/icde55515.2023.00132
摘要

Computing the shortest path distance between two vertices in a road network is a building block in numerous applications. To do so efficiently, the state-of-the-art proposals adopt a tree decomposition process with heuristic strategies to build 2-hop label indexes. However, these indexes suffer from large space overheads caused by either tree imbalance or a large tree height. Independently of this, reinforcement learning has recently show impressive performance at sequential decision making in spatial data management tasks. We observe that tree decomposition is naturally a sequential decision making problem that decides which vertex to process at each step. In this paper, we propose a reinforcement learning based tree decomposition (RLTD) approach that reduces the space overhead significantly. We model tree decomposition as a Markov Decision Process, exploiting features of both the network topological structure and the tree structure. We further optimize the tree decomposition process by taking the network density into account, which yields a great generalization of the model on large road networks. Extensive experiments with real-world data offer insights into the performance of the proposals, showing that they are able to reduce the space overhead by about 51% and achieve on average about 14% speedup for queries with almost the same preprocessing time when compared with the state-of-the-art proposals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
H与K完成签到,获得积分10
刚刚
风趣青槐完成签到,获得积分10
刚刚
planA完成签到,获得积分10
1秒前
LiBertY发布了新的文献求助10
2秒前
情怀应助ii采纳,获得30
2秒前
4秒前
4秒前
bkagyin应助鱼儿想游采纳,获得10
5秒前
睡觉睡觉完成签到,获得积分10
6秒前
脑洞疼应助知性的冰棍采纳,获得30
8秒前
fhhkckk3发布了新的文献求助10
9秒前
23lk发布了新的文献求助10
10秒前
Kim关注了科研通微信公众号
10秒前
健忘的无招完成签到,获得积分10
18秒前
聪明凌柏完成签到 ,获得积分10
19秒前
19秒前
23秒前
马大勺发布了新的文献求助10
25秒前
慕青应助23lk采纳,获得10
28秒前
28秒前
29秒前
29秒前
31秒前
我到了啊发布了新的文献求助10
32秒前
斯文败类应助Connor采纳,获得10
33秒前
生动路人应助Dank1ng采纳,获得10
33秒前
tracey发布了新的文献求助10
35秒前
choiyxh发布了新的文献求助50
35秒前
shinble完成签到,获得积分10
35秒前
汉堡包应助123123采纳,获得10
36秒前
hugeng完成签到,获得积分10
39秒前
无花果应助从容幼南采纳,获得10
39秒前
徐家欢完成签到 ,获得积分10
40秒前
shinble发布了新的文献求助10
43秒前
高文强发布了新的文献求助10
47秒前
子唯完成签到,获得积分10
48秒前
TTSDW完成签到,获得积分10
49秒前
李健应助1111采纳,获得10
51秒前
52秒前
56秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999264
求助须知:如何正确求助?哪些是违规求助? 3538622
关于积分的说明 11274738
捐赠科研通 3277531
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883950
科研通“疑难数据库(出版商)”最低求助积分说明 810080