Fusion-based tensor radiomics using reproducible features: Application to survival prediction in head and neck cancer

无线电技术 人工智能 预处理器 随机森林 计算机科学 正电子发射断层摄影术 模式识别(心理学) 组内相关 主成分分析 机器学习 医学 核医学 数学 统计 心理测量学
作者
Mohammad R. Salmanpour,Mahdi Hosseinzadeh,Seyed Masoud Rezaeijo,Arman Rahmim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107714-107714 被引量:38
标识
DOI:10.1016/j.cmpb.2023.107714
摘要

Numerous features are commonly generated in radiomics applications as applied to medical imaging, and identification of robust radiomics features (RFs) can be an important step to derivation of reliable, reproducible solutions. In this work, we utilize a tensor radiomics (TR) framework, where numerous fusions are explored, to generate different flavours of RFs, and we aimed to identify RFs that are robust to fusion techniques in head and neck cancer. Overall, we aimed to predict progression-free survival (PFS) using Hybrid Machine Learning Systems (HMLS) and reproducible RFs. The study was performed on 408 patients with head and neck cancer from The Cancer Imaging Archive. After image preprocessing, 15 fusion techniques were employed to combine Positron Emission Tomography (PET) and Computed Tomography (CT) images. Subsequently, 215 RFs were extracted through a standardized radiomics software, with 17 ‘flavours’ generated using PET-only, CT-only, and 15 fused PET&CT images. The variability of RFs across flavours was studied using the Intraclass Correlation Coefficient (ICC). Furthermore, the features were categorized into seven reliability groups, 106 reproducible RFs with ICC>0.75 were selected, highly correlated flavours were removed, Principal Component Analysis was used to convert 17 flavours to 1 attribute, the polynomial function was utilized to increase RFs, and Analysis of variance (ANOVA) was used to select the relevant attributes. Finally, 3 classifiers including Random Forest (RFC), Logistic regression (LR), and Multi-layer perceptron were applied to the preselected relevant attributes to predict binary PFS. In 5-fold cross-validation, 80% of 4 divisions were utilized to train the model, and the remaining 20% was utilized to evaluate the model. Further, the remaining fold was used for external nested testing. Reliability analysis indicated that most morphological features belong to the high-reliability category. By contrast, local intensity and statistical features extracted from images belong to the low-reliability category. In the tensor framework, the highest 5-fold cross-validation accuracy of 76.7%±3.3% with an external nested testing of 70.6%±6.7% resulted from the reproducible TR+polynomial function+ANOVA+LR algorithm while the accuracy of 70.0%±4.2% with the external nested testing of 67.7%±4.9% was achieved through the PCA fusion+RFC (non-tensor paradigm). This study demonstrated that using reproducible RFs as utilized within a tensor fusion radiomics framework, linked with ANOVA and LR, added value to prediction of progression-free survival outcome in head and neck cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助叫滚滚采纳,获得10
1秒前
2秒前
刘歌完成签到 ,获得积分10
2秒前
阿巡完成签到,获得积分10
2秒前
Chen完成签到,获得积分10
4秒前
LSH970829发布了新的文献求助10
4秒前
哈哈哈完成签到 ,获得积分10
5秒前
汤姆完成签到,获得积分10
5秒前
7秒前
7秒前
翠翠完成签到,获得积分10
8秒前
8秒前
LSH970829完成签到,获得积分10
9秒前
Lyg完成签到,获得积分20
10秒前
坚强的樱发布了新的文献求助10
10秒前
baodingning完成签到,获得积分10
11秒前
11秒前
公茂源发布了新的文献求助30
11秒前
热爱完成签到,获得积分10
12秒前
13秒前
叫滚滚发布了新的文献求助10
14秒前
星瑆心完成签到,获得积分10
14秒前
啦啦啦啦啦完成签到,获得积分10
15秒前
Lyg发布了新的文献求助10
15秒前
Dksido完成签到,获得积分10
16秒前
兰博基尼奥完成签到,获得积分10
16秒前
热情芷荷发布了新的文献求助10
18秒前
random完成签到,获得积分10
19秒前
19秒前
果果瑞宁完成签到,获得积分10
19秒前
20秒前
机智小虾米完成签到,获得积分20
20秒前
goldenfleece完成签到,获得积分10
21秒前
科研通AI2S应助学者采纳,获得10
21秒前
小杨完成签到,获得积分10
22秒前
sutharsons应助科研通管家采纳,获得30
23秒前
23秒前
Ava应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808