Fusion-based tensor radiomics using reproducible features: Application to survival prediction in head and neck cancer

无线电技术 人工智能 预处理器 随机森林 计算机科学 正电子发射断层摄影术 模式识别(心理学) 组内相关 主成分分析 机器学习 医学 核医学 数学 统计 心理测量学
作者
Mohammad R. Salmanpour,Mahdi Hosseinzadeh,Seyed Masoud Rezaeijo,Arman Rahmim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:240: 107714-107714 被引量:38
标识
DOI:10.1016/j.cmpb.2023.107714
摘要

Numerous features are commonly generated in radiomics applications as applied to medical imaging, and identification of robust radiomics features (RFs) can be an important step to derivation of reliable, reproducible solutions. In this work, we utilize a tensor radiomics (TR) framework, where numerous fusions are explored, to generate different flavours of RFs, and we aimed to identify RFs that are robust to fusion techniques in head and neck cancer. Overall, we aimed to predict progression-free survival (PFS) using Hybrid Machine Learning Systems (HMLS) and reproducible RFs. The study was performed on 408 patients with head and neck cancer from The Cancer Imaging Archive. After image preprocessing, 15 fusion techniques were employed to combine Positron Emission Tomography (PET) and Computed Tomography (CT) images. Subsequently, 215 RFs were extracted through a standardized radiomics software, with 17 ‘flavours’ generated using PET-only, CT-only, and 15 fused PET&CT images. The variability of RFs across flavours was studied using the Intraclass Correlation Coefficient (ICC). Furthermore, the features were categorized into seven reliability groups, 106 reproducible RFs with ICC>0.75 were selected, highly correlated flavours were removed, Principal Component Analysis was used to convert 17 flavours to 1 attribute, the polynomial function was utilized to increase RFs, and Analysis of variance (ANOVA) was used to select the relevant attributes. Finally, 3 classifiers including Random Forest (RFC), Logistic regression (LR), and Multi-layer perceptron were applied to the preselected relevant attributes to predict binary PFS. In 5-fold cross-validation, 80% of 4 divisions were utilized to train the model, and the remaining 20% was utilized to evaluate the model. Further, the remaining fold was used for external nested testing. Reliability analysis indicated that most morphological features belong to the high-reliability category. By contrast, local intensity and statistical features extracted from images belong to the low-reliability category. In the tensor framework, the highest 5-fold cross-validation accuracy of 76.7%±3.3% with an external nested testing of 70.6%±6.7% resulted from the reproducible TR+polynomial function+ANOVA+LR algorithm while the accuracy of 70.0%±4.2% with the external nested testing of 67.7%±4.9% was achieved through the PCA fusion+RFC (non-tensor paradigm). This study demonstrated that using reproducible RFs as utilized within a tensor fusion radiomics framework, linked with ANOVA and LR, added value to prediction of progression-free survival outcome in head and neck cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性的微笑完成签到,获得积分10
刚刚
FashionBoy应助zhtty采纳,获得10
1秒前
111发布了新的文献求助10
2秒前
2秒前
周乘风应助小金星星采纳,获得10
3秒前
Ayla雁翎完成签到 ,获得积分10
4秒前
海底捞水果完成签到,获得积分10
4秒前
稳重驳发布了新的文献求助10
5秒前
Vietnsmasong发布了新的文献求助10
6秒前
传奇3应助杜彦君采纳,获得10
6秒前
天朗发布了新的文献求助10
7秒前
zzyl完成签到,获得积分10
9秒前
TomatoRin完成签到,获得积分10
9秒前
Soin完成签到,获得积分10
11秒前
11秒前
斯文败类应助吃吃采纳,获得10
13秒前
失眠傥完成签到,获得积分10
14秒前
Lucas应助and999采纳,获得10
14秒前
小二郎应助zhang采纳,获得10
15秒前
YuuLoon应助冷静妙之采纳,获得10
15秒前
快乐东蒽完成签到,获得积分10
16秒前
Ava应助JayWu采纳,获得10
16秒前
大方芾完成签到,获得积分10
17秒前
狐狸毛毛完成签到,获得积分10
20秒前
orixero应助善良的迎夏采纳,获得10
20秒前
星辰大海应助lf66采纳,获得10
21秒前
Vietnsmasong完成签到,获得积分10
21秒前
杜彦君完成签到 ,获得积分10
22秒前
Lucas应助小野狼采纳,获得10
22秒前
22秒前
22秒前
23秒前
23秒前
洁净的发夹完成签到,获得积分10
24秒前
充电宝应助皇帝的床帘采纳,获得50
24秒前
吃吃完成签到,获得积分20
24秒前
自信的蓝天完成签到,获得积分10
25秒前
26秒前
狐狸毛毛发布了新的文献求助10
26秒前
wsh完成签到 ,获得积分10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760