Optimization Control Strategy for a Central Air Conditioning System Based on AFUCB-DQN

空调 计算机科学 中央空调 强化学习 能源消耗 深信不疑网络 控制系统 稳健性(进化) 控制理论(社会学) 数学优化 控制(管理) 工程类 人工智能 深度学习 数学 电气工程 化学 基因 机械工程 生物化学
作者
He Tian,M. Ben Feng,Huaicong Fan,Ranran Cao,Qiang Gao
出处
期刊:Processes [MDPI AG]
卷期号:11 (7): 2068-2068 被引量:2
标识
DOI:10.3390/pr11072068
摘要

The central air conditioning system accounts for 50% of the building energy consumption, and the cold source system accounts for more than 60% of the total energy consumption of the central air conditioning system. Therefore, it is crucial to solve the optimal control strategy of the cold source system according to the cooling load demand, and adjust the operating parameters in time to achieve low energy consumption and high efficiency. Due to the complex and changeable characteristics of the central air conditioning system, it is often difficult to achieve ideal results using traditional control methods. In order to solve this problem, this study first coupled the building cooling load simulation environment and the cold source system simulation environment to build a central air conditioning system simulation environment. Secondly, noise interference was introduced to reduce the gap between the simulated environment and the actual environment, and improve the robustness of the environment. Finally, combined with deep reinforcement learning, an optimal control strategy for the central air conditioning system is proposed. Aiming at the simulation environment of the central air conditioning system, a new model-free algorithm is proposed, called the dominant function upper confidence bound deep Q-network (AFUCB-DQN). The algorithm combines the advantages of an advantage function and an upper confidence bound algorithm to balance the relationship between exploration and exploitation, so as to achieve a better control strategy search. Compared with the traditional deep Q-network (DQN) algorithm, double deep Q-network (DDQN) algorithm, and the distributed double deep Q-network (D3QN) algorithm, the AFUCB-DQN algorithm has more stable convergence, faster convergence speed, and higher reward. In this study, significant energy savings of 21.5%, 21.4%, and 22.3% were obtained by conducting experiments at indoor thermal comfort levels of 24 °C, 25 °C, and 26 °C in the summer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助xg采纳,获得10
刚刚
听话的亦瑶完成签到,获得积分10
1秒前
龙江游侠完成签到,获得积分10
1秒前
小蘑菇应助honeybee采纳,获得10
2秒前
Agernon应助超帅曼柔采纳,获得10
2秒前
3秒前
jella完成签到,获得积分10
4秒前
一网小海蜇完成签到 ,获得积分10
4秒前
7秒前
7秒前
Langsam完成签到,获得积分10
8秒前
JamesPei应助嘻嘻采纳,获得10
8秒前
mo72090完成签到,获得积分10
8秒前
poison完成签到 ,获得积分10
9秒前
俏皮半烟发布了新的文献求助10
9秒前
机灵的鸣凤完成签到 ,获得积分10
10秒前
王wangWANG完成签到,获得积分10
10秒前
freemoe完成签到,获得积分20
10秒前
WJ完成签到,获得积分10
11秒前
李健应助侦察兵采纳,获得10
12秒前
无花果应助子川采纳,获得10
13秒前
13秒前
爆米花应助龙歪歪采纳,获得10
15秒前
16秒前
16秒前
xxxqqq完成签到,获得积分10
17秒前
虚拟的觅山完成签到,获得积分10
18秒前
slj完成签到,获得积分10
19秒前
科研爱好者完成签到 ,获得积分10
19秒前
20秒前
ywang发布了新的文献求助10
21秒前
koial完成签到 ,获得积分10
22秒前
苏卿应助小xy采纳,获得10
22秒前
侦察兵发布了新的文献求助10
24秒前
25秒前
yyyy发布了新的文献求助50
25秒前
皇帝的床帘完成签到,获得积分10
26秒前
GXY完成签到,获得积分10
28秒前
xiuwen发布了新的文献求助10
28秒前
啦啦啦完成签到,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849