Optimization Control Strategy for a Central Air Conditioning System Based on AFUCB-DQN

空调 计算机科学 中央空调 强化学习 能源消耗 深信不疑网络 控制系统 稳健性(进化) 控制理论(社会学) 数学优化 控制(管理) 工程类 人工智能 深度学习 数学 电气工程 化学 基因 机械工程 生物化学
作者
He Tian,M. Ben Feng,Huaicong Fan,Ranran Cao,Qiang Gao
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:11 (7): 2068-2068 被引量:2
标识
DOI:10.3390/pr11072068
摘要

The central air conditioning system accounts for 50% of the building energy consumption, and the cold source system accounts for more than 60% of the total energy consumption of the central air conditioning system. Therefore, it is crucial to solve the optimal control strategy of the cold source system according to the cooling load demand, and adjust the operating parameters in time to achieve low energy consumption and high efficiency. Due to the complex and changeable characteristics of the central air conditioning system, it is often difficult to achieve ideal results using traditional control methods. In order to solve this problem, this study first coupled the building cooling load simulation environment and the cold source system simulation environment to build a central air conditioning system simulation environment. Secondly, noise interference was introduced to reduce the gap between the simulated environment and the actual environment, and improve the robustness of the environment. Finally, combined with deep reinforcement learning, an optimal control strategy for the central air conditioning system is proposed. Aiming at the simulation environment of the central air conditioning system, a new model-free algorithm is proposed, called the dominant function upper confidence bound deep Q-network (AFUCB-DQN). The algorithm combines the advantages of an advantage function and an upper confidence bound algorithm to balance the relationship between exploration and exploitation, so as to achieve a better control strategy search. Compared with the traditional deep Q-network (DQN) algorithm, double deep Q-network (DDQN) algorithm, and the distributed double deep Q-network (D3QN) algorithm, the AFUCB-DQN algorithm has more stable convergence, faster convergence speed, and higher reward. In this study, significant energy savings of 21.5%, 21.4%, and 22.3% were obtained by conducting experiments at indoor thermal comfort levels of 24 °C, 25 °C, and 26 °C in the summer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助王志威采纳,获得10
刚刚
lotus完成签到,获得积分10
1秒前
1秒前
1秒前
xuli-888完成签到,获得积分10
1秒前
丹丹丹发布了新的文献求助20
2秒前
思源应助大鸭梨采纳,获得10
2秒前
狂野友梅完成签到,获得积分20
2秒前
zrs发布了新的文献求助10
2秒前
机灵水卉发布了新的文献求助10
2秒前
2秒前
Ayu完成签到,获得积分10
3秒前
3秒前
666发布了新的文献求助10
4秒前
sunny完成签到,获得积分10
4秒前
止芷完成签到 ,获得积分10
5秒前
甜心院士完成签到,获得积分10
5秒前
7秒前
ice完成签到,获得积分10
7秒前
耍酷延恶完成签到,获得积分10
7秒前
李健的小迷弟应助hai采纳,获得10
8秒前
百里雅青发布了新的文献求助30
8秒前
瘦瘦寻菡完成签到,获得积分10
9秒前
JamesPei应助秭归子归采纳,获得30
9秒前
老艺术家发布了新的文献求助10
10秒前
10秒前
我是老大应助zrs采纳,获得10
10秒前
wbshore完成签到,获得积分10
11秒前
张占完成签到,获得积分10
11秒前
12秒前
meme完成签到,获得积分10
12秒前
13秒前
13秒前
潇洒的诗桃应助呜呜采纳,获得10
13秒前
jogrgr发布了新的文献求助10
13秒前
袁青寒完成签到 ,获得积分10
13秒前
小檗碱发布了新的文献求助10
13秒前
666完成签到,获得积分10
14秒前
穆思柔完成签到,获得积分10
14秒前
orixero应助lee采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942