Optimization Control Strategy for a Central Air Conditioning System Based on AFUCB-DQN

空调 计算机科学 中央空调 强化学习 能源消耗 深信不疑网络 控制系统 稳健性(进化) 控制理论(社会学) 数学优化 控制(管理) 工程类 人工智能 深度学习 数学 电气工程 化学 基因 机械工程 生物化学
作者
He Tian,M. Ben Feng,Huaicong Fan,Ranran Cao,Qiang Gao
出处
期刊:Processes [MDPI AG]
卷期号:11 (7): 2068-2068 被引量:2
标识
DOI:10.3390/pr11072068
摘要

The central air conditioning system accounts for 50% of the building energy consumption, and the cold source system accounts for more than 60% of the total energy consumption of the central air conditioning system. Therefore, it is crucial to solve the optimal control strategy of the cold source system according to the cooling load demand, and adjust the operating parameters in time to achieve low energy consumption and high efficiency. Due to the complex and changeable characteristics of the central air conditioning system, it is often difficult to achieve ideal results using traditional control methods. In order to solve this problem, this study first coupled the building cooling load simulation environment and the cold source system simulation environment to build a central air conditioning system simulation environment. Secondly, noise interference was introduced to reduce the gap between the simulated environment and the actual environment, and improve the robustness of the environment. Finally, combined with deep reinforcement learning, an optimal control strategy for the central air conditioning system is proposed. Aiming at the simulation environment of the central air conditioning system, a new model-free algorithm is proposed, called the dominant function upper confidence bound deep Q-network (AFUCB-DQN). The algorithm combines the advantages of an advantage function and an upper confidence bound algorithm to balance the relationship between exploration and exploitation, so as to achieve a better control strategy search. Compared with the traditional deep Q-network (DQN) algorithm, double deep Q-network (DDQN) algorithm, and the distributed double deep Q-network (D3QN) algorithm, the AFUCB-DQN algorithm has more stable convergence, faster convergence speed, and higher reward. In this study, significant energy savings of 21.5%, 21.4%, and 22.3% were obtained by conducting experiments at indoor thermal comfort levels of 24 °C, 25 °C, and 26 °C in the summer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Ava应助cc采纳,获得10
5秒前
7秒前
wanci应助khc采纳,获得10
7秒前
橙子发布了新的文献求助10
9秒前
Aspirin完成签到,获得积分10
9秒前
SciGPT应助池林采纳,获得10
9秒前
桐桐应助池林采纳,获得10
9秒前
11秒前
奥德彪爱拉香蕉皮给奥德彪爱拉香蕉皮的求助进行了留言
11秒前
落后昊焱发布了新的文献求助30
14秒前
Aspirin发布了新的文献求助10
16秒前
记录吐吐完成签到 ,获得积分10
20秒前
SUIJI发布了新的文献求助20
21秒前
义气的一德完成签到,获得积分10
22秒前
22秒前
科研民工李完成签到,获得积分10
22秒前
lighost完成签到,获得积分20
24秒前
羊六一发布了新的文献求助10
24秒前
25秒前
忐忑的如冰完成签到,获得积分10
27秒前
传奇3应助醉爱吃小孩采纳,获得10
27秒前
30秒前
于芋菊完成签到,获得积分0
30秒前
chenchuwen发布了新的文献求助10
30秒前
wangsenyu发布了新的文献求助10
31秒前
小蘑菇应助SUIJI采纳,获得10
32秒前
赵川完成签到 ,获得积分10
32秒前
33秒前
健壮梦菡完成签到,获得积分10
33秒前
34秒前
34秒前
castleman发布了新的文献求助10
35秒前
36秒前
小小高完成签到 ,获得积分10
37秒前
科目三应助九月清晨采纳,获得10
37秒前
39秒前
Supreme完成签到,获得积分10
39秒前
传奇3应助刘依梦采纳,获得10
40秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343244
求助须知:如何正确求助?哪些是违规求助? 2970337
关于积分的说明 8643473
捐赠科研通 2650290
什么是DOI,文献DOI怎么找? 1451220
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661447