材料科学
表面等离子共振
局域表面等离子体子
等离子体子
栅栏
表面等离子体子
纳米技术
共振(粒子物理)
表面等离子体激元
光电子学
纳米颗粒
原子物理学
物理
作者
Divagar Murugan,Marcel Tintelott,M. Narayanan,Xuan Thang Vu,Tetiana Kurkina,César Rodriguez‐Emmenegger,Ulrich Schwaneberg,Jakub Dostálek,Sven Ingebrandt,Vivek Pachauri
标识
DOI:10.1002/adom.202401862
摘要
Abstract Surface plasmon resonance (SPR) is a key technique in developing sensor platforms for clinical diagnostics, drug discovery, food quality, and environmental monitoring applications. While prism‐coupled (Kretschmann) SPR remains a “gold‐standard” for laboratory work‐flows due to easier fabrication, handling and high through put, other configurations such as grating‐coupled SPR (GC‐SPR) and wave‐guide mode SPR are yet to fulfil their technology potential. This work evaluates the technical aspects influencing the performance of GC‐SPR and reviews recent progress in the fabrication of such platforms. In principle, the GC‐SPR involves the illumination of the plasmonic metal film with periodic gratings to excite the surface plasmons (SP) via diffraction‐based phase matching. The real performance of the GC‐SPR is, however, heavily influenced by the topography of the grating structures produced via top‐down lithography techniques. This review discusses latest in approaches to achieve consistent plasmonic gratings with uniform features and periodicity over a large scale and explores the choice of plasmon‐active and substrate material for enhanced performance. The review also provides insights into the different GC‐SPR measurement configurations and highlights on opportunities with their potential applications as biosensors with translational capabilities.
科研通智能强力驱动
Strongly Powered by AbleSci AI