Doping engineering modulated adsorption and sensing performance of β-tellurene towards greenhouse gas molecules

温室气体 吸附 兴奋剂 分子 材料科学 温室 环境科学 工程物理 光电子学 纳米技术 化学 工程类 物理化学 地质学 有机化学 海洋学 园艺 生物
作者
Hanjie Zhang,Yitong Zhang,Jiesen Li,Yi-Lin Lu,Jingyue Xu,Ran Luo,Shengjie Dong,Lin Mei,Zhuo Mao
出处
期刊:Journal of Physics D [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6463/ad7c59
摘要

Abstract CO2, CH4, CF4, CCl3F, CCl2F2, HCF2Cl, N2O and SF6 are well-known greenhouse gases that cause serious threat to the earth's ecological environment. To expand the application and development of two-dimensional (2D) materials in the field of greenhouse gas sensing, adsorption of the greenhouse gases on the pristine β-tellurene monolayer was investigated by first-principles calculations to estimate the potential application of β-tellurene as a monitor for greenhouse gas. The results indicate that β-tellurene exhibits favorable adsorption capabilities for greenhouse gases, especially demonstrating selective sensing potential for SF6 molecules due to the changes in electronic structures after gas exposure. The effects of noble metal atoms doping on structural, electronic and SF6 sensing properties were systematic estimated. The calculation results revealed that doping with different transition metal (TM) atom could bring diverse electronic properties to β-tellurene. Among them, doping with Os, Pd, Pt, Rh, and Ru could effectively enhance the electronic delocalization, improving the detection sensitivity for β-tellurene. In addition, TM doping could also improve the recovery time of β-tellurene by two orders of magnitude, and provided the possibility for β-tellurene as a work function type sensing material. By delving into the gas sensing properties of β-tellurene with TM doping, we provided a valuable guidance for the design of innovative tellurene- based sensing 2D materials for devices and technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
N1neDDDD发布了新的文献求助10
3秒前
时尚嚓茶发布了新的文献求助10
7秒前
舒适鸡翅完成签到 ,获得积分10
8秒前
黄靓靓发布了新的文献求助10
8秒前
9秒前
10秒前
火星上的西牛完成签到,获得积分10
11秒前
KL发布了新的文献求助10
12秒前
可能发布了新的文献求助10
12秒前
14秒前
15秒前
彭于晏应助哲欣采纳,获得10
18秒前
XS_QI发布了新的文献求助10
19秒前
devil完成签到,获得积分10
19秒前
慕青应助N1neDDDD采纳,获得10
20秒前
怡然乾完成签到 ,获得积分10
21秒前
端庄卿完成签到 ,获得积分10
24秒前
勤恳的水风完成签到 ,获得积分10
25秒前
26秒前
医海心潮完成签到 ,获得积分10
26秒前
领导范儿应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
乐空思应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
29秒前
我是老大应助科研通管家采纳,获得10
29秒前
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
乐空思应助科研通管家采纳,获得10
30秒前
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
30秒前
赘婿应助科研通管家采纳,获得10
30秒前
30秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847541
求助须知:如何正确求助?哪些是违规求助? 6227303
关于积分的说明 15620489
捐赠科研通 4964224
什么是DOI,文献DOI怎么找? 2676489
邀请新用户注册赠送积分活动 1621042
关于科研通互助平台的介绍 1576969