环境卫生
人口
疾病
风险评估
环境化学
环境科学
医学
化学
计算机科学
内科学
计算机安全
作者
Qingan Fu,Yanze Wu,Min Zhu,Yunlei Xia,Qingyun Yu,Zhekang Liu,Xiaowei Ma,Renqiang Yang
标识
DOI:10.1016/j.ecoenv.2024.117210
摘要
Cardiovascular disease (CVD) remains a leading cause of mortality globally. Environmental pollutants, specifically volatile organic compounds (VOCs), have been identified as significant risk factors. This study aims to develop a machine learning (ML) model to predict CVD risk based on VOC exposure and demographic data using SHapley Additive exPlanations (SHAP) for interpretability.
科研通智能强力驱动
Strongly Powered by AbleSci AI