Design of hexapod robot equipped with omnidirectional vision sensor for defect inspection of pipeline’s inner surface

六足动物 全向天线 管道(软件) 曲面(拓扑) 机器人 计算机视觉 计算机科学 人工智能 声学 物理 数学 电信 几何学 天线(收音机) 程序设计语言
作者
Zhanshe Guo,Jing Wang,Fuqiang Zhou,P. F. Zhang,Zhipeng Song,Haishu Tan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115901-115901
标识
DOI:10.1088/1361-6501/ad6922
摘要

Abstract Defect detection of inner surface of precision pipes is a crucial aspect of ensuring production safety. Currently, pipeline defect detection primarily relies on recording video for manual recognition, with urgent need to improve automation, quantification and accuracy. This paper presents a hexapod in-pipe robot with carrying capacity designed to transport the omnidirectional vision sensor to specified location within unreachable pipelines. The feasibility of the robot’s mechanical design and sensor load-carrying module is analyzed using theory calculations, motion simulations and finite element method. To address the challenges of small pixel ratio and weak background changes in panoramic images, a tiny defect segmentor based on ResNet is proposed for detecting tiny defects on the inner surface of pipelines. The hardware and software systems are implemented, and the motion performance of the pipeline robot is validated through experiments. The results demonstrate that the robot achieves stable movement at a speed of over 0.1 m s −1 and can adapt to pipe diameter ranging from of 110 to 130 mm. The novelty of the robot lies in providing stable control of the loaded vision sensor, with control precision of the rotation angle and the displacement recorded at 1.84% and 0.87%, respectively. Furthermore, the proposed method achieves a detection accuracy of 95.67% for tiny defects with a diameter less than 3 mm and provides defect location information. This pipeline robot serves as an essential reference for development of in-pipe 3D vision inspection system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心凝旋发布了新的文献求助10
刚刚
孟柠柠完成签到,获得积分10
1秒前
1秒前
哈哈哈发布了新的文献求助10
1秒前
SYLH应助di采纳,获得10
2秒前
韭菜盒子完成签到,获得积分20
2秒前
2秒前
3秒前
饭小心发布了新的文献求助10
3秒前
tanjianxin完成签到,获得积分10
3秒前
wanci应助帅玉玉采纳,获得10
3秒前
Ellie完成签到 ,获得积分10
3秒前
晴天完成签到 ,获得积分10
4秒前
123完成签到,获得积分10
4秒前
4秒前
EOFG0PW发布了新的文献求助10
5秒前
buno应助yug采纳,获得10
5秒前
hgh完成签到,获得积分10
5秒前
001关闭了001文献求助
6秒前
研友_VZG7GZ应助Fareth采纳,获得10
6秒前
7秒前
韭菜盒子发布了新的文献求助10
7秒前
7秒前
大意的安白完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
学术蟑螂完成签到,获得积分10
8秒前
8秒前
8秒前
兴奋冷松完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
饭小心完成签到,获得积分20
9秒前
luodd完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助EOFG0PW采纳,获得10
11秒前
小吴发布了新的文献求助10
11秒前
甜甜灵槐发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740