已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal AI Combining Clinical and Imaging Inputs Improves Prostate Cancer Detection

医学 前列腺癌 接收机工作特性 前列腺 磁共振成像 放射科 核医学 特征(语言学) 临床实习 人工智能 癌症 计算机科学 内科学 语言学 哲学 家庭医学
作者
Christian Roest,Derya Yakar,Dorjan Ivan Rener Sitar,Joeran S. Bosma,Dennis B. Rouw,Stefan J. Fransen,Henkjan Huisman,Thomas C. Kwee
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:59 (12): 854-860 被引量:11
标识
DOI:10.1097/rli.0000000000001102
摘要

Objectives Deep learning (DL) studies for the detection of clinically significant prostate cancer (csPCa) on magnetic resonance imaging (MRI) often overlook potentially relevant clinical parameters such as prostate-specific antigen, prostate volume, and age. This study explored the integration of clinical parameters and MRI-based DL to enhance diagnostic accuracy for csPCa on MRI. Materials and Methods We retrospectively analyzed 932 biparametric prostate MRI examinations performed for suspected csPCa (ISUP ≥2) at 2 institutions. Each MRI scan was automatically analyzed by a previously developed DL model to detect and segment csPCa lesions. Three sets of features were extracted: DL lesion suspicion levels, clinical parameters (prostate-specific antigen, prostate volume, age), and MRI-based lesion volumes for all DL-detected lesions. Six multimodal artificial intelligence (AI) classifiers were trained for each combination of feature sets, employing both early (feature-level) and late (decision-level) information fusion methods. The diagnostic performance of each model was tested internally on 20% of center 1 data and externally on center 2 data (n = 529). Receiver operating characteristic comparisons determined the optimal feature combination and information fusion method and assessed the benefit of multimodal versus unimodal analysis. The optimal model performance was compared with a radiologist using PI-RADS. Results Internally, the multimodal AI integrating DL suspicion levels with clinical features via early fusion achieved the highest performance. Externally, it surpassed baselines using clinical parameters (0.77 vs 0.67 area under the curve [AUC], P < 0.001) and DL suspicion levels alone (AUC: 0.77 vs 0.70, P = 0.006). Early fusion outperformed late fusion in external data (0.77 vs 0.73 AUC, P = 0.005). No significant performance gaps were observed between multimodal AI and radiologist assessments (internal: 0.87 vs 0.88 AUC; external: 0.77 vs 0.75 AUC, both P > 0.05). Conclusions Multimodal AI (combining DL suspicion levels and clinical parameters) outperforms clinical and MRI-only AI for csPCa detection. Early information fusion enhanced AI robustness in our multicenter setting. Incorporating lesion volumes did not enhance diagnostic efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的猫咪完成签到,获得积分10
刚刚
土豪的紫荷完成签到 ,获得积分10
刚刚
何为完成签到 ,获得积分0
2秒前
3秒前
江枫渔火VC完成签到 ,获得积分10
3秒前
陶醉的钢笔完成签到 ,获得积分0
3秒前
tong完成签到 ,获得积分10
3秒前
yaya完成签到 ,获得积分10
3秒前
4秒前
ranj完成签到,获得积分10
5秒前
5秒前
leyellows完成签到 ,获得积分10
5秒前
8秒前
xiaxia应助爱睡觉的森森采纳,获得10
8秒前
王琳完成签到,获得积分10
9秒前
Ken921319005发布了新的文献求助10
9秒前
无语伦比完成签到 ,获得积分10
9秒前
10秒前
小杜完成签到,获得积分10
10秒前
乳酸菌小面包完成签到,获得积分10
10秒前
上官若男应助qiqibaby采纳,获得30
11秒前
Akim应助Jenny采纳,获得10
13秒前
积极大白菜真实的钥匙完成签到,获得积分10
13秒前
XIEQ发布了新的文献求助10
13秒前
自觉的夏之完成签到,获得积分20
14秒前
14秒前
卧镁铀钳完成签到 ,获得积分10
14秒前
这个真不懂完成签到,获得积分10
14秒前
YangHuilin完成签到,获得积分10
17秒前
17秒前
Lw完成签到,获得积分10
18秒前
19秒前
小湛完成签到 ,获得积分10
19秒前
兴奋的听筠完成签到,获得积分10
19秒前
20秒前
20秒前
Carl完成签到 ,获得积分10
20秒前
脑洞疼应助jimoon采纳,获得10
20秒前
xiaxia应助爱睡觉的森森采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573156
求助须知:如何正确求助?哪些是违规求助? 4659297
关于积分的说明 14724290
捐赠科研通 4599114
什么是DOI,文献DOI怎么找? 2524112
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464681