亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal AI Combining Clinical and Imaging Inputs Improves Prostate Cancer Detection

医学 前列腺癌 接收机工作特性 前列腺 磁共振成像 放射科 核医学 特征(语言学) 临床实习 人工智能 癌症 计算机科学 内科学 语言学 哲学 家庭医学
作者
Christian Roest,Derya Yakar,Dorjan Ivan Rener Sitar,Joeran S. Bosma,Dennis B. Rouw,Stefan J. Fransen,Henkjan Huisman,Thomas C. Kwee
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:59 (12): 854-860 被引量:11
标识
DOI:10.1097/rli.0000000000001102
摘要

Objectives Deep learning (DL) studies for the detection of clinically significant prostate cancer (csPCa) on magnetic resonance imaging (MRI) often overlook potentially relevant clinical parameters such as prostate-specific antigen, prostate volume, and age. This study explored the integration of clinical parameters and MRI-based DL to enhance diagnostic accuracy for csPCa on MRI. Materials and Methods We retrospectively analyzed 932 biparametric prostate MRI examinations performed for suspected csPCa (ISUP ≥2) at 2 institutions. Each MRI scan was automatically analyzed by a previously developed DL model to detect and segment csPCa lesions. Three sets of features were extracted: DL lesion suspicion levels, clinical parameters (prostate-specific antigen, prostate volume, age), and MRI-based lesion volumes for all DL-detected lesions. Six multimodal artificial intelligence (AI) classifiers were trained for each combination of feature sets, employing both early (feature-level) and late (decision-level) information fusion methods. The diagnostic performance of each model was tested internally on 20% of center 1 data and externally on center 2 data (n = 529). Receiver operating characteristic comparisons determined the optimal feature combination and information fusion method and assessed the benefit of multimodal versus unimodal analysis. The optimal model performance was compared with a radiologist using PI-RADS. Results Internally, the multimodal AI integrating DL suspicion levels with clinical features via early fusion achieved the highest performance. Externally, it surpassed baselines using clinical parameters (0.77 vs 0.67 area under the curve [AUC], P < 0.001) and DL suspicion levels alone (AUC: 0.77 vs 0.70, P = 0.006). Early fusion outperformed late fusion in external data (0.77 vs 0.73 AUC, P = 0.005). No significant performance gaps were observed between multimodal AI and radiologist assessments (internal: 0.87 vs 0.88 AUC; external: 0.77 vs 0.75 AUC, both P > 0.05). Conclusions Multimodal AI (combining DL suspicion levels and clinical parameters) outperforms clinical and MRI-only AI for csPCa detection. Early information fusion enhanced AI robustness in our multicenter setting. Incorporating lesion volumes did not enhance diagnostic efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyds完成签到,获得积分0
31秒前
所所应助lynn_zhang采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
隐形的妙松完成签到,获得积分10
2分钟前
丘比特应助宋灵竹采纳,获得10
2分钟前
乐观生活完成签到,获得积分10
3分钟前
kokishi完成签到,获得积分10
3分钟前
3分钟前
宋灵竹发布了新的文献求助10
3分钟前
3分钟前
宋灵竹完成签到,获得积分10
3分钟前
3分钟前
乐观生活发布了新的文献求助10
3分钟前
4分钟前
4分钟前
小齐发布了新的文献求助10
4分钟前
Fairy完成签到,获得积分10
4分钟前
充电宝应助kkk采纳,获得10
4分钟前
4分钟前
kkk发布了新的文献求助10
4分钟前
kkk完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
lynn_zhang发布了新的文献求助10
6分钟前
lynn_zhang完成签到,获得积分10
6分钟前
6分钟前
研友_Lmb15n发布了新的文献求助10
6分钟前
敞敞亮亮完成签到 ,获得积分10
6分钟前
布干维尔岛耐摔王完成签到,获得积分10
6分钟前
抹茶苔藓完成签到,获得积分10
6分钟前
研友_Lmb15n完成签到,获得积分10
6分钟前
佳佳完成签到,获得积分10
7分钟前
Emad0gh发布了新的文献求助30
7分钟前
月军完成签到 ,获得积分10
7分钟前
Luron完成签到,获得积分10
7分钟前
Luron发布了新的文献求助30
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438545
求助须知:如何正确求助?哪些是违规求助? 4549740
关于积分的说明 14220869
捐赠科研通 4470545
什么是DOI,文献DOI怎么找? 2449937
邀请新用户注册赠送积分活动 1440904
关于科研通互助平台的介绍 1417340