Multimodal AI Combining Clinical and Imaging Inputs Improves Prostate Cancer Detection

医学 前列腺癌 接收机工作特性 前列腺 磁共振成像 放射科 核医学 特征(语言学) 临床实习 人工智能 癌症 计算机科学 内科学 语言学 哲学 家庭医学
作者
Christian Roest,Derya Yakar,Dorjan Ivan Rener Sitar,Joeran S. Bosma,Dennis B. Rouw,Stefan J. Fransen,Henkjan Huisman,Thomas C. Kwee
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:59 (12): 854-860 被引量:11
标识
DOI:10.1097/rli.0000000000001102
摘要

Objectives Deep learning (DL) studies for the detection of clinically significant prostate cancer (csPCa) on magnetic resonance imaging (MRI) often overlook potentially relevant clinical parameters such as prostate-specific antigen, prostate volume, and age. This study explored the integration of clinical parameters and MRI-based DL to enhance diagnostic accuracy for csPCa on MRI. Materials and Methods We retrospectively analyzed 932 biparametric prostate MRI examinations performed for suspected csPCa (ISUP ≥2) at 2 institutions. Each MRI scan was automatically analyzed by a previously developed DL model to detect and segment csPCa lesions. Three sets of features were extracted: DL lesion suspicion levels, clinical parameters (prostate-specific antigen, prostate volume, age), and MRI-based lesion volumes for all DL-detected lesions. Six multimodal artificial intelligence (AI) classifiers were trained for each combination of feature sets, employing both early (feature-level) and late (decision-level) information fusion methods. The diagnostic performance of each model was tested internally on 20% of center 1 data and externally on center 2 data (n = 529). Receiver operating characteristic comparisons determined the optimal feature combination and information fusion method and assessed the benefit of multimodal versus unimodal analysis. The optimal model performance was compared with a radiologist using PI-RADS. Results Internally, the multimodal AI integrating DL suspicion levels with clinical features via early fusion achieved the highest performance. Externally, it surpassed baselines using clinical parameters (0.77 vs 0.67 area under the curve [AUC], P < 0.001) and DL suspicion levels alone (AUC: 0.77 vs 0.70, P = 0.006). Early fusion outperformed late fusion in external data (0.77 vs 0.73 AUC, P = 0.005). No significant performance gaps were observed between multimodal AI and radiologist assessments (internal: 0.87 vs 0.88 AUC; external: 0.77 vs 0.75 AUC, both P > 0.05). Conclusions Multimodal AI (combining DL suspicion levels and clinical parameters) outperforms clinical and MRI-only AI for csPCa detection. Early information fusion enhanced AI robustness in our multicenter setting. Incorporating lesion volumes did not enhance diagnostic efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhendezy发布了新的文献求助10
1秒前
1秒前
1秒前
张龙完成签到,获得积分20
2秒前
孙文杰发布了新的文献求助10
2秒前
武雨寒发布了新的文献求助10
3秒前
weizhao发布了新的文献求助10
3秒前
4秒前
燕小丙完成签到,获得积分10
4秒前
经纲完成签到 ,获得积分0
6秒前
淡淡的雪发布了新的文献求助10
6秒前
7秒前
Lucas应助weizhao采纳,获得10
7秒前
方汀关注了科研通微信公众号
7秒前
LmY大帅比发布了新的文献求助10
7秒前
xiaobai123456发布了新的文献求助10
8秒前
8秒前
尹沐完成签到 ,获得积分10
8秒前
觉悟111完成签到,获得积分10
8秒前
蒸馏水应助喷香大蒜瓣采纳,获得10
9秒前
zxh完成签到,获得积分10
9秒前
费慕青发布了新的文献求助10
10秒前
丘比特应助帅气的宽采纳,获得10
10秒前
12秒前
yunan完成签到,获得积分10
13秒前
13秒前
zzz完成签到,获得积分10
13秒前
weizhao完成签到,获得积分20
13秒前
冷傲的紫寒完成签到 ,获得积分10
13秒前
姜姜姜姜发布了新的文献求助10
14秒前
失眠初夏完成签到,获得积分10
14秒前
儒雅的善愁完成签到,获得积分10
15秒前
黑猫发布了新的文献求助10
15秒前
16秒前
wheat完成签到,获得积分10
16秒前
爱喝可乐完成签到 ,获得积分10
16秒前
淡淡的雪完成签到,获得积分10
16秒前
dery完成签到,获得积分10
16秒前
打打应助aaa采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600254
求助须知:如何正确求助?哪些是违规求助? 4685964
关于积分的说明 14840835
捐赠科研通 4676051
什么是DOI,文献DOI怎么找? 2538627
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167