已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal AI Combining Clinical and Imaging Inputs Improves Prostate Cancer Detection

医学 前列腺癌 接收机工作特性 前列腺 磁共振成像 放射科 核医学 特征(语言学) 临床实习 人工智能 癌症 计算机科学 内科学 语言学 哲学 家庭医学
作者
Christian Roest,Derya Yakar,Dorjan Ivan Rener Sitar,Joeran S. Bosma,Dennis B. Rouw,Stefan J. Fransen,Henkjan Huisman,Thomas C. Kwee
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:59 (12): 854-860 被引量:11
标识
DOI:10.1097/rli.0000000000001102
摘要

Objectives Deep learning (DL) studies for the detection of clinically significant prostate cancer (csPCa) on magnetic resonance imaging (MRI) often overlook potentially relevant clinical parameters such as prostate-specific antigen, prostate volume, and age. This study explored the integration of clinical parameters and MRI-based DL to enhance diagnostic accuracy for csPCa on MRI. Materials and Methods We retrospectively analyzed 932 biparametric prostate MRI examinations performed for suspected csPCa (ISUP ≥2) at 2 institutions. Each MRI scan was automatically analyzed by a previously developed DL model to detect and segment csPCa lesions. Three sets of features were extracted: DL lesion suspicion levels, clinical parameters (prostate-specific antigen, prostate volume, age), and MRI-based lesion volumes for all DL-detected lesions. Six multimodal artificial intelligence (AI) classifiers were trained for each combination of feature sets, employing both early (feature-level) and late (decision-level) information fusion methods. The diagnostic performance of each model was tested internally on 20% of center 1 data and externally on center 2 data (n = 529). Receiver operating characteristic comparisons determined the optimal feature combination and information fusion method and assessed the benefit of multimodal versus unimodal analysis. The optimal model performance was compared with a radiologist using PI-RADS. Results Internally, the multimodal AI integrating DL suspicion levels with clinical features via early fusion achieved the highest performance. Externally, it surpassed baselines using clinical parameters (0.77 vs 0.67 area under the curve [AUC], P < 0.001) and DL suspicion levels alone (AUC: 0.77 vs 0.70, P = 0.006). Early fusion outperformed late fusion in external data (0.77 vs 0.73 AUC, P = 0.005). No significant performance gaps were observed between multimodal AI and radiologist assessments (internal: 0.87 vs 0.88 AUC; external: 0.77 vs 0.75 AUC, both P > 0.05). Conclusions Multimodal AI (combining DL suspicion levels and clinical parameters) outperforms clinical and MRI-only AI for csPCa detection. Early information fusion enhanced AI robustness in our multicenter setting. Incorporating lesion volumes did not enhance diagnostic efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助AHa采纳,获得10
刚刚
1秒前
逮劳完成签到 ,获得积分10
1秒前
2秒前
十里八乡俊俏后生完成签到 ,获得积分10
2秒前
AS发布了新的文献求助10
5秒前
成就书雪完成签到,获得积分0
5秒前
cc发布了新的文献求助10
7秒前
华仔应助许个愿采纳,获得10
7秒前
YHY完成签到,获得积分10
7秒前
慕青应助木木采纳,获得10
8秒前
优雅山柏完成签到,获得积分10
8秒前
9秒前
妮可罗宾完成签到 ,获得积分10
9秒前
xr完成签到 ,获得积分10
11秒前
dududuudu完成签到,获得积分10
13秒前
星弟完成签到 ,获得积分10
15秒前
明理从露完成签到 ,获得积分10
15秒前
16秒前
andrele应助缥缈的映萱采纳,获得10
18秒前
木木完成签到,获得积分10
19秒前
MoSen完成签到 ,获得积分10
21秒前
许个愿完成签到,获得积分10
22秒前
虚幻德地发布了新的文献求助10
23秒前
思源应助AS采纳,获得10
23秒前
24秒前
刘雄丽完成签到 ,获得积分10
25秒前
麦麦完成签到,获得积分10
25秒前
blueskyzhi完成签到,获得积分10
26秒前
27秒前
学校不买数据库完成签到,获得积分10
28秒前
www268完成签到 ,获得积分10
28秒前
XX0完成签到 ,获得积分10
29秒前
yuanyuan发布了新的文献求助10
29秒前
满意妙梦发布了新的文献求助10
30秒前
Stella应助高贵幻梅采纳,获得10
31秒前
17发布了新的文献求助10
31秒前
舒懿铭完成签到,获得积分10
31秒前
传奇3应助Cmqq采纳,获得10
31秒前
AS完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599548
求助须知:如何正确求助?哪些是违规求助? 4685259
关于积分的说明 14838243
捐赠科研通 4669177
什么是DOI,文献DOI怎么找? 2538076
邀请新用户注册赠送积分活动 1505474
关于科研通互助平台的介绍 1470833