亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal AI Combining Clinical and Imaging Inputs Improves Prostate Cancer Detection

医学 前列腺癌 接收机工作特性 前列腺 磁共振成像 放射科 核医学 特征(语言学) 临床实习 人工智能 癌症 计算机科学 内科学 语言学 哲学 家庭医学
作者
Christian Roest,Derya Yakar,Dorjan Ivan Rener Sitar,Joeran S. Bosma,Dennis B. Rouw,Stefan J. Fransen,Henkjan Huisman,Thomas C. Kwee
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:59 (12): 854-860 被引量:20
标识
DOI:10.1097/rli.0000000000001102
摘要

Objectives Deep learning (DL) studies for the detection of clinically significant prostate cancer (csPCa) on magnetic resonance imaging (MRI) often overlook potentially relevant clinical parameters such as prostate-specific antigen, prostate volume, and age. This study explored the integration of clinical parameters and MRI-based DL to enhance diagnostic accuracy for csPCa on MRI. Materials and Methods We retrospectively analyzed 932 biparametric prostate MRI examinations performed for suspected csPCa (ISUP ≥2) at 2 institutions. Each MRI scan was automatically analyzed by a previously developed DL model to detect and segment csPCa lesions. Three sets of features were extracted: DL lesion suspicion levels, clinical parameters (prostate-specific antigen, prostate volume, age), and MRI-based lesion volumes for all DL-detected lesions. Six multimodal artificial intelligence (AI) classifiers were trained for each combination of feature sets, employing both early (feature-level) and late (decision-level) information fusion methods. The diagnostic performance of each model was tested internally on 20% of center 1 data and externally on center 2 data (n = 529). Receiver operating characteristic comparisons determined the optimal feature combination and information fusion method and assessed the benefit of multimodal versus unimodal analysis. The optimal model performance was compared with a radiologist using PI-RADS. Results Internally, the multimodal AI integrating DL suspicion levels with clinical features via early fusion achieved the highest performance. Externally, it surpassed baselines using clinical parameters (0.77 vs 0.67 area under the curve [AUC], P < 0.001) and DL suspicion levels alone (AUC: 0.77 vs 0.70, P = 0.006). Early fusion outperformed late fusion in external data (0.77 vs 0.73 AUC, P = 0.005). No significant performance gaps were observed between multimodal AI and radiologist assessments (internal: 0.87 vs 0.88 AUC; external: 0.77 vs 0.75 AUC, both P > 0.05). Conclusions Multimodal AI (combining DL suspicion levels and clinical parameters) outperforms clinical and MRI-only AI for csPCa detection. Early information fusion enhanced AI robustness in our multicenter setting. Incorporating lesion volumes did not enhance diagnostic efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiangqing完成签到 ,获得积分10
14秒前
Sunziy完成签到,获得积分10
16秒前
22秒前
25秒前
Lionnn完成签到 ,获得积分10
25秒前
26秒前
盛夏如花发布了新的文献求助10
27秒前
灵巧慕青发布了新的文献求助10
31秒前
Getlogger发布了新的文献求助10
32秒前
41秒前
Irene发布了新的文献求助10
47秒前
凉逗听完成签到,获得积分10
48秒前
Lucas应助明亮紫易采纳,获得10
55秒前
善学以致用应助Irene采纳,获得10
1分钟前
汉堡包应助Getlogger采纳,获得10
1分钟前
Panther完成签到,获得积分10
1分钟前
mr_wang完成签到,获得积分10
1分钟前
1分钟前
灵巧慕青完成签到,获得积分10
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
为什么这样子完成签到,获得积分10
1分钟前
爱听歌的明雪完成签到,获得积分20
1分钟前
科研通AI6应助纸鹤采纳,获得10
1分钟前
可爱的函函应助小花生采纳,获得10
1分钟前
充电宝应助小飞采纳,获得10
1分钟前
行走完成签到,获得积分10
1分钟前
所所应助兜里全是糖采纳,获得10
1分钟前
李忆梦完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
阿泽完成签到,获得积分10
1分钟前
John完成签到,获得积分10
1分钟前
华仔应助阿泽采纳,获得10
1分钟前
2分钟前
科研启动完成签到,获得积分10
2分钟前
kangkang发布了新的文献求助10
2分钟前
1234完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644502
求助须知:如何正确求助?哪些是违规求助? 4764327
关于积分的说明 15025209
捐赠科研通 4802884
什么是DOI,文献DOI怎么找? 2567685
邀请新用户注册赠送积分活动 1525344
关于科研通互助平台的介绍 1484802