Multimodal AI Combining Clinical and Imaging Inputs Improves Prostate Cancer Detection

医学 前列腺癌 接收机工作特性 前列腺 磁共振成像 放射科 核医学 特征(语言学) 临床实习 人工智能 癌症 计算机科学 内科学 语言学 哲学 家庭医学
作者
Christian Roest,Derya Yakar,Dorjan Ivan Rener Sitar,Joeran S. Bosma,Dennis B. Rouw,Stefan J. Fransen,Henkjan Huisman,Thomas C. Kwee
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/rli.0000000000001102
摘要

Objectives Deep learning (DL) studies for the detection of clinically significant prostate cancer (csPCa) on magnetic resonance imaging (MRI) often overlook potentially relevant clinical parameters such as prostate-specific antigen, prostate volume, and age. This study explored the integration of clinical parameters and MRI-based DL to enhance diagnostic accuracy for csPCa on MRI. Materials and Methods We retrospectively analyzed 932 biparametric prostate MRI examinations performed for suspected csPCa (ISUP ≥2) at 2 institutions. Each MRI scan was automatically analyzed by a previously developed DL model to detect and segment csPCa lesions. Three sets of features were extracted: DL lesion suspicion levels, clinical parameters (prostate-specific antigen, prostate volume, age), and MRI-based lesion volumes for all DL-detected lesions. Six multimodal artificial intelligence (AI) classifiers were trained for each combination of feature sets, employing both early (feature-level) and late (decision-level) information fusion methods. The diagnostic performance of each model was tested internally on 20% of center 1 data and externally on center 2 data (n = 529). Receiver operating characteristic comparisons determined the optimal feature combination and information fusion method and assessed the benefit of multimodal versus unimodal analysis. The optimal model performance was compared with a radiologist using PI-RADS. Results Internally, the multimodal AI integrating DL suspicion levels with clinical features via early fusion achieved the highest performance. Externally, it surpassed baselines using clinical parameters (0.77 vs 0.67 area under the curve [AUC], P < 0.001) and DL suspicion levels alone (AUC: 0.77 vs 0.70, P = 0.006). Early fusion outperformed late fusion in external data (0.77 vs 0.73 AUC, P = 0.005). No significant performance gaps were observed between multimodal AI and radiologist assessments (internal: 0.87 vs 0.88 AUC; external: 0.77 vs 0.75 AUC, both P > 0.05). Conclusions Multimodal AI (combining DL suspicion levels and clinical parameters) outperforms clinical and MRI-only AI for csPCa detection. Early information fusion enhanced AI robustness in our multicenter setting. Incorporating lesion volumes did not enhance diagnostic efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助你好采纳,获得30
刚刚
刚刚
1秒前
啊啊发布了新的文献求助30
1秒前
2秒前
2秒前
大模型应助117318采纳,获得10
3秒前
3秒前
4秒前
霏霏完成签到,获得积分10
4秒前
万万想到了完成签到,获得积分10
5秒前
球球了发布了新的文献求助10
5秒前
jingjing-8995发布了新的文献求助10
5秒前
5秒前
6秒前
简单夏兰完成签到,获得积分10
7秒前
自然之水完成签到,获得积分10
7秒前
啊啊完成签到,获得积分10
7秒前
2440301335完成签到,获得积分10
8秒前
搜集达人应助weiwei采纳,获得10
8秒前
科研通AI2S应助张zhang采纳,获得10
8秒前
情怀应助weiwei采纳,获得10
8秒前
英俊的铭应助weiwei采纳,获得10
8秒前
科研通AI2S应助weiwei采纳,获得10
8秒前
星辰大海应助顺心紫翠采纳,获得10
9秒前
Jasmine完成签到,获得积分10
9秒前
曲奇完成签到,获得积分10
9秒前
10秒前
10秒前
朴实绝悟发布了新的文献求助10
10秒前
时567完成签到,获得积分10
11秒前
wjjc完成签到,获得积分10
12秒前
12秒前
善良的诗珊完成签到 ,获得积分10
13秒前
13秒前
fan_alive发布了新的文献求助10
14秒前
14秒前
Qls发布了新的文献求助10
14秒前
雪原白鹿完成签到 ,获得积分10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170569
求助须知:如何正确求助?哪些是违规求助? 2821667
关于积分的说明 7935825
捐赠科研通 2482104
什么是DOI,文献DOI怎么找? 1322285
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608