Dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction

计算机科学 生成模型 判决 生成语法 自然语言处理 情绪分析 人工智能 图形 构造(python库) 依赖关系(UML) 对偶(语法数字) 代表(政治) 理论计算机科学 语言学 哲学 程序设计语言 法学 政治 政治学
作者
Haowen Xu,Mingwei Tang,Tao Cai,Jie Hu,Mingfeng Zhao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:301: 112342-112342 被引量:3
标识
DOI:10.1016/j.knosys.2024.112342
摘要

Currently, generative models are showing exceptional abilities to identify and generate triplets expressed within sentences within the field of Aspect Sentiment Triplet Extraction (ASTE). Although these models are capable of recognizing terms and sentiment representations, they are not fully capable of generating multi-word aspects and opinion terms. In response to these challenges, this paper presents a dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction (GAC). In the GAC model, we construct a graph triplet loss module, which integrates dependency syntactic information to deepen the understanding of complex sentence structures, and utilizes graph attention network to explicitly define the dependencies between words, which makes the model better at recognizing aspects and opinions within complex structures. Furthermore, we designed the triplet representation contrastive learning module, which significantly enhances the model's ability to identify complex sentiment types and differentiate aspect and opinion terms composed of single words and sentences by capturing the internal connections between sentiment types and term lengths. In the experimental section, the paper tests two public datasets. According to the results, the GAC model outperforms existing methods in generating triplets, confirming the efficiency and advancement of our approach in tackling the ASTE challenges. Specifically, on different subsets (14lap, 14res, 15res, 16res) of the ASTE-Data-v2 and ASTE-Data-v1 datasets, the F1 scores of our method were 66.47%, 76.01%, 69.04%, 76.25% and 64.14%, 76.44%, 68.94%, 76.37%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YSK发布了新的文献求助10
1秒前
2秒前
3秒前
豆豆发布了新的文献求助10
3秒前
4秒前
yjj发布了新的文献求助10
4秒前
深情安青应助123456采纳,获得10
6秒前
金蛋蛋发布了新的文献求助10
6秒前
闫敬蓉关注了科研通微信公众号
6秒前
生姜发布了新的文献求助10
6秒前
7秒前
7秒前
甘乐应助宇宙中的先行者采纳,获得10
7秒前
康康发布了新的文献求助10
8秒前
Cindy发布了新的文献求助40
9秒前
大头完成签到 ,获得积分10
9秒前
乐乐应助XinTKW采纳,获得10
10秒前
wxr发布了新的文献求助10
11秒前
q792309106发布了新的文献求助10
11秒前
11秒前
12秒前
感性的梦竹完成签到,获得积分20
12秒前
13秒前
14秒前
渊崖曙春发布了新的文献求助30
14秒前
情怀应助温柔的迎曼采纳,获得10
15秒前
17秒前
17秒前
哈哈哈完成签到,获得积分10
18秒前
18秒前
20秒前
yuuuu发布了新的文献求助10
20秒前
闫敬蓉发布了新的文献求助10
20秒前
二三应助康康采纳,获得20
20秒前
晗晗发布了新的文献求助10
21秒前
Lee发布了新的文献求助10
22秒前
23秒前
超级李包包完成签到,获得积分10
23秒前
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533689
关于积分的说明 11263515
捐赠科研通 3273441
什么是DOI,文献DOI怎么找? 1806049
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629