Dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction

计算机科学 生成模型 判决 生成语法 自然语言处理 情绪分析 人工智能 图形 构造(python库) 依赖关系(UML) 对偶(语法数字) 代表(政治) 理论计算机科学 语言学 哲学 政治 政治学 法学 程序设计语言
作者
Haowen Xu,Mingwei Tang,Tao Cai,Jie Hu,Mingfeng Zhao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112342-112342 被引量:3
标识
DOI:10.1016/j.knosys.2024.112342
摘要

Currently, generative models are showing exceptional abilities to identify and generate triplets expressed within sentences within the field of Aspect Sentiment Triplet Extraction (ASTE). Although these models are capable of recognizing terms and sentiment representations, they are not fully capable of generating multi-word aspects and opinion terms. In response to these challenges, this paper presents a dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction (GAC). In the GAC model, we construct a graph triplet loss module, which integrates dependency syntactic information to deepen the understanding of complex sentence structures, and utilizes graph attention network to explicitly define the dependencies between words, which makes the model better at recognizing aspects and opinions within complex structures. Furthermore, we designed the triplet representation contrastive learning module, which significantly enhances the model's ability to identify complex sentiment types and differentiate aspect and opinion terms composed of single words and sentences by capturing the internal connections between sentiment types and term lengths. In the experimental section, the paper tests two public datasets. According to the results, the GAC model outperforms existing methods in generating triplets, confirming the efficiency and advancement of our approach in tackling the ASTE challenges. Specifically, on different subsets (14lap, 14res, 15res, 16res) of the ASTE-Data-v2 and ASTE-Data-v1 datasets, the F1 scores of our method were 66.47%, 76.01%, 69.04%, 76.25% and 64.14%, 76.44%, 68.94%, 76.37%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jazz完成签到,获得积分10
刚刚
石武发布了新的文献求助10
刚刚
刚刚
吕亦寒完成签到,获得积分10
1秒前
1秒前
2秒前
SANDY发布了新的文献求助10
2秒前
3秒前
Jan完成签到,获得积分10
3秒前
落后以旋完成签到,获得积分10
3秒前
3秒前
绿色之梦完成签到 ,获得积分10
3秒前
伶俐书雁完成签到,获得积分20
3秒前
Astral发布了新的文献求助10
3秒前
桂鱼完成签到 ,获得积分10
3秒前
orixero应助冷酷妙菡采纳,获得10
3秒前
4秒前
安白枫发布了新的文献求助10
4秒前
4秒前
4秒前
专一的鸡翅完成签到 ,获得积分10
4秒前
小管发布了新的文献求助10
4秒前
4秒前
田様应助程昌盛采纳,获得10
4秒前
小小狗完成签到,获得积分10
5秒前
xm发布了新的文献求助10
5秒前
杏仁完成签到 ,获得积分10
5秒前
khjia完成签到 ,获得积分10
5秒前
daodao应助冬无青山采纳,获得10
5秒前
arcgen完成签到,获得积分10
6秒前
6秒前
落后以旋发布了新的文献求助10
6秒前
健忘蘑菇完成签到,获得积分10
6秒前
DavidSun发布了新的文献求助10
6秒前
地学韦丰吉司长完成签到,获得积分10
7秒前
天真的逍遥完成签到,获得积分10
7秒前
sqz_df发布了新的文献求助30
7秒前
河清海晏发布了新的文献求助10
8秒前
小蘑菇应助落寞冬日采纳,获得10
8秒前
木子发布了新的文献求助10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699543
求助须知:如何正确求助?哪些是违规求助? 5131434
关于积分的说明 15226342
捐赠科研通 4854543
什么是DOI,文献DOI怎么找? 2604759
邀请新用户注册赠送积分活动 1556119
关于科研通互助平台的介绍 1514388