Dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction

计算机科学 生成模型 判决 生成语法 自然语言处理 情绪分析 人工智能 图形 构造(python库) 依赖关系(UML) 对偶(语法数字) 代表(政治) 理论计算机科学 语言学 哲学 政治 政治学 法学 程序设计语言
作者
Haowen Xu,Mingwei Tang,Tao Cai,Jie Hu,Mingfeng Zhao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112342-112342 被引量:3
标识
DOI:10.1016/j.knosys.2024.112342
摘要

Currently, generative models are showing exceptional abilities to identify and generate triplets expressed within sentences within the field of Aspect Sentiment Triplet Extraction (ASTE). Although these models are capable of recognizing terms and sentiment representations, they are not fully capable of generating multi-word aspects and opinion terms. In response to these challenges, this paper presents a dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction (GAC). In the GAC model, we construct a graph triplet loss module, which integrates dependency syntactic information to deepen the understanding of complex sentence structures, and utilizes graph attention network to explicitly define the dependencies between words, which makes the model better at recognizing aspects and opinions within complex structures. Furthermore, we designed the triplet representation contrastive learning module, which significantly enhances the model's ability to identify complex sentiment types and differentiate aspect and opinion terms composed of single words and sentences by capturing the internal connections between sentiment types and term lengths. In the experimental section, the paper tests two public datasets. According to the results, the GAC model outperforms existing methods in generating triplets, confirming the efficiency and advancement of our approach in tackling the ASTE challenges. Specifically, on different subsets (14lap, 14res, 15res, 16res) of the ASTE-Data-v2 and ASTE-Data-v1 datasets, the F1 scores of our method were 66.47%, 76.01%, 69.04%, 76.25% and 64.14%, 76.44%, 68.94%, 76.37%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dskelf发布了新的文献求助10
1秒前
西瓜应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Jeremy完成签到,获得积分10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
留白完成签到 ,获得积分10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
asdfzxcv应助科研通管家采纳,获得10
2秒前
一个果儿应助科研通管家采纳,获得30
2秒前
asdfzxcv应助科研通管家采纳,获得10
2秒前
longhang应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
longhang应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
贪玩丑完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
香蕉觅云应助梁朝伟采纳,获得10
3秒前
cc发布了新的文献求助10
3秒前
刘雨森完成签到 ,获得积分10
3秒前
4秒前
月亮发布了新的文献求助10
4秒前
刘帅完成签到,获得积分10
5秒前
前后左右都是卷王完成签到,获得积分10
5秒前
kk完成签到,获得积分10
6秒前
怕孤独的谷波完成签到,获得积分10
7秒前
无极微光应助年轻秀采纳,获得20
9秒前
缥缈的机器猫完成签到,获得积分10
10秒前
学科研的小林完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646513
求助须知:如何正确求助?哪些是违规求助? 4771610
关于积分的说明 15035503
捐赠科研通 4805306
什么是DOI,文献DOI怎么找? 2569599
邀请新用户注册赠送积分活动 1526597
关于科研通互助平台的介绍 1485858