Dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction

计算机科学 生成模型 判决 生成语法 自然语言处理 情绪分析 人工智能 图形 构造(python库) 依赖关系(UML) 对偶(语法数字) 代表(政治) 理论计算机科学 语言学 哲学 政治 政治学 法学 程序设计语言
作者
Haowen Xu,Mingwei Tang,Tao Cai,Jie Hu,Mingfeng Zhao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112342-112342 被引量:3
标识
DOI:10.1016/j.knosys.2024.112342
摘要

Currently, generative models are showing exceptional abilities to identify and generate triplets expressed within sentences within the field of Aspect Sentiment Triplet Extraction (ASTE). Although these models are capable of recognizing terms and sentiment representations, they are not fully capable of generating multi-word aspects and opinion terms. In response to these challenges, this paper presents a dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction (GAC). In the GAC model, we construct a graph triplet loss module, which integrates dependency syntactic information to deepen the understanding of complex sentence structures, and utilizes graph attention network to explicitly define the dependencies between words, which makes the model better at recognizing aspects and opinions within complex structures. Furthermore, we designed the triplet representation contrastive learning module, which significantly enhances the model's ability to identify complex sentiment types and differentiate aspect and opinion terms composed of single words and sentences by capturing the internal connections between sentiment types and term lengths. In the experimental section, the paper tests two public datasets. According to the results, the GAC model outperforms existing methods in generating triplets, confirming the efficiency and advancement of our approach in tackling the ASTE challenges. Specifically, on different subsets (14lap, 14res, 15res, 16res) of the ASTE-Data-v2 and ASTE-Data-v1 datasets, the F1 scores of our method were 66.47%, 76.01%, 69.04%, 76.25% and 64.14%, 76.44%, 68.94%, 76.37%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WX发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
李爱国应助暴走小面包采纳,获得10
1秒前
1秒前
2秒前
明亮尔冬完成签到,获得积分10
3秒前
未完完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
一个左正蹬完成签到,获得积分10
4秒前
汉堡包应助泡泡龙采纳,获得10
5秒前
看不完的文献写不完的文完成签到,获得积分20
6秒前
6秒前
嘿嘿发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
淡定棒棒糖完成签到 ,获得积分10
9秒前
思源应助xiao123789采纳,获得10
9秒前
下次一定发布了新的文献求助10
11秒前
所所应助冰海采纳,获得10
11秒前
11秒前
注视发布了新的文献求助10
12秒前
小满发布了新的文献求助10
14秒前
14秒前
suirenshi发布了新的文献求助10
15秒前
lllttt完成签到,获得积分10
15秒前
苦瓜完成签到,获得积分10
16秒前
大模型应助燕然都护采纳,获得10
16秒前
17秒前
17秒前
18秒前
q3760384发布了新的文献求助10
18秒前
英姑应助wp采纳,获得10
18秒前
111111完成签到 ,获得积分20
18秒前
天天快乐应助Galateor采纳,获得10
19秒前
俏皮诺言完成签到,获得积分10
19秒前
20秒前
科目三应助nitsuj采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675283
求助须知:如何正确求助?哪些是违规求助? 4944946
关于积分的说明 15152504
捐赠科研通 4834477
什么是DOI,文献DOI怎么找? 2589502
邀请新用户注册赠送积分活动 1543183
关于科研通互助平台的介绍 1501079