Dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction

计算机科学 生成模型 判决 生成语法 自然语言处理 情绪分析 人工智能 图形 构造(python库) 依赖关系(UML) 对偶(语法数字) 代表(政治) 理论计算机科学 语言学 哲学 程序设计语言 法学 政治 政治学
作者
Haowen Xu,Mingwei Tang,Tao Cai,Jie Hu,Mingfeng Zhao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112342-112342 被引量:3
标识
DOI:10.1016/j.knosys.2024.112342
摘要

Currently, generative models are showing exceptional abilities to identify and generate triplets expressed within sentences within the field of Aspect Sentiment Triplet Extraction (ASTE). Although these models are capable of recognizing terms and sentiment representations, they are not fully capable of generating multi-word aspects and opinion terms. In response to these challenges, this paper presents a dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction (GAC). In the GAC model, we construct a graph triplet loss module, which integrates dependency syntactic information to deepen the understanding of complex sentence structures, and utilizes graph attention network to explicitly define the dependencies between words, which makes the model better at recognizing aspects and opinions within complex structures. Furthermore, we designed the triplet representation contrastive learning module, which significantly enhances the model's ability to identify complex sentiment types and differentiate aspect and opinion terms composed of single words and sentences by capturing the internal connections between sentiment types and term lengths. In the experimental section, the paper tests two public datasets. According to the results, the GAC model outperforms existing methods in generating triplets, confirming the efficiency and advancement of our approach in tackling the ASTE challenges. Specifically, on different subsets (14lap, 14res, 15res, 16res) of the ASTE-Data-v2 and ASTE-Data-v1 datasets, the F1 scores of our method were 66.47%, 76.01%, 69.04%, 76.25% and 64.14%, 76.44%, 68.94%, 76.37%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助Z小姐采纳,获得30
1秒前
2秒前
AN应助pan采纳,获得100
3秒前
领导范儿应助小鱼采纳,获得10
3秒前
充电宝应助咻咻采纳,获得10
3秒前
AN应助yukky采纳,获得200
5秒前
Jasper应助隐形的夏云采纳,获得10
5秒前
6秒前
郑大帅发布了新的文献求助10
6秒前
8秒前
9秒前
11秒前
11秒前
12秒前
寻道图强应助现代书雪采纳,获得20
13秒前
自私的猫发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
小y要读书完成签到,获得积分10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
肖鹏发布了新的文献求助10
17秒前
科目三应助萝萝山大王采纳,获得10
17秒前
Z小姐发布了新的文献求助20
18秒前
呼呼完成签到,获得积分10
18秒前
小德完成签到,获得积分20
19秒前
抑郁小鼠解剖家完成签到,获得积分10
19秒前
土豆完成签到,获得积分10
19秒前
mumumu发布了新的文献求助10
20秒前
20秒前
徐嘎嘎发布了新的文献求助10
21秒前
22秒前
科研通AI2S应助呼呼采纳,获得10
22秒前
BowieHuang应助嘉星糖采纳,获得10
22秒前
23秒前
25秒前
魔幻的抽屉应助15095999693采纳,获得10
26秒前
CipherSage应助郑大帅采纳,获得10
26秒前
EchoH完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777888
求助须知:如何正确求助?哪些是违规求助? 5636349
关于积分的说明 15447020
捐赠科研通 4909811
什么是DOI,文献DOI怎么找? 2641951
邀请新用户注册赠送积分活动 1589821
关于科研通互助平台的介绍 1544311