已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of PM2.5 Concentration Based on Deep Learning for High-Dimensional Time Series

系列(地层学) 地质学 古生物学
作者
Jie Hu,Jia Yuan,Zhenhong Jia,Cong-Bing He,Fei Shi,Xiaohui Huang
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (19): 8745-8745
标识
DOI:10.3390/app14198745
摘要

PM2.5 poses a serious threat to human life and health, so the accurate prediction of PM2.5 concentration is essential for controlling air pollution. However, previous studies lacked the generalization ability to predict high-dimensional PM2.5 concentration time series. Therefore, a new model for predicting PM2.5 concentration was proposed to address this in this paper. Firstly, the linear rectification function with leakage (LeakyRelu) was used to replace the activation function in the Temporal Convolutional Network (TCN) to better capture the dependence of feature data over long distances. Next, the residual structure, dilated rate, and feature-matching convolution position of the TCN were adjusted to improve the performance of the improved TCN (LR-TCN) and reduce the amount of computation. Finally, a new prediction model (GRU-LR-TCN) was established, which adaptively integrated the prediction of the fused Gated Recurrent Unit (GRU) and LR-TCN based on the inverse ratio of root mean square error (RMSE) weighting. The experimental results show that, for monitoring station #1001, LR-TCN increased the RMSE, mean absolute error (MAE), and determination coefficient (R2) by 12.9%, 11.3%, and 3.8%, respectively, compared with baselines. Compared with LR-TCN, GRU-LR-TCN improved the index symmetric mean absolute percentage error (SMAPE) by 7.1%. In addition, by comparing the estimation results with other models on other air quality datasets, all the indicators have advantages, and it is further demonstrated that the GRU-LR-TCN model exhibits superior generalization across various datasets, proving to be more efficient and applicable in predicting urban PM2.5 concentration. This can contribute to enhancing air quality and safeguarding public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccm应助科研废物采纳,获得10
4秒前
wanci应助相龙采纳,获得10
4秒前
唐唐发布了新的文献求助10
12秒前
隐形曼青应助黙宇循光采纳,获得10
17秒前
18秒前
18秒前
陶醉觅夏发布了新的文献求助10
18秒前
无辜的猎豹完成签到 ,获得积分10
21秒前
小小鱼发布了新的文献求助10
22秒前
彭于晏应助唐唐采纳,获得10
24秒前
你是我的唯一完成签到 ,获得积分10
26秒前
29秒前
Jasper应助ggg采纳,获得10
30秒前
30秒前
34秒前
老肖应助清脆雅绿采纳,获得10
34秒前
35秒前
哈哈哈哈发布了新的文献求助20
37秒前
黙宇循光发布了新的文献求助10
41秒前
46秒前
英俊的铭应助摘星数羊采纳,获得10
47秒前
万能图书馆应助hd采纳,获得10
47秒前
WLL发布了新的文献求助10
48秒前
Cuinewb发布了新的文献求助30
51秒前
传奇3应助科研通管家采纳,获得10
51秒前
Orange应助科研通管家采纳,获得10
51秒前
浅尝离白应助科研通管家采纳,获得30
51秒前
无花果应助科研通管家采纳,获得10
51秒前
李爱国应助科研通管家采纳,获得10
51秒前
科研通AI2S应助xixixixixixi采纳,获得10
51秒前
顾矜应助科研通管家采纳,获得30
51秒前
yangching应助科研通管家采纳,获得10
51秒前
51秒前
51秒前
51秒前
Fandebiao应助科研通管家采纳,获得10
51秒前
52秒前
小刘完成签到,获得积分10
52秒前
粒子耶完成签到,获得积分10
53秒前
岁月静好Taoyi完成签到 ,获得积分10
55秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161877
求助须知:如何正确求助?哪些是违规求助? 2813104
关于积分的说明 7898643
捐赠科研通 2472140
什么是DOI,文献DOI怎么找? 1316350
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129