Multi-Task Pretrained Language Model with Novel Application Domains Enables More Comprehensive Health and Ecological Toxicity Prediction

任务(项目管理) 计算机科学 毒性 人工智能 机器学习 自然语言处理 工程类 化学 系统工程 有机化学
作者
Zhichao Tan,Youcai Zhao,Kunsen Lin,Tao Zhou
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:477: 135265-135265 被引量:1
标识
DOI:10.1016/j.jhazmat.2024.135265
摘要

In silico models for screening substances of healthy and ecological concern are essential for effective chemical management. However, current data-driven toxicity prediction models confront formidable challenges related to expressive capacity, data scarcity, and reliability issues. Thus, this study introduces TOX-BERT, a SMILES-based pretrained model for screening health and ecological toxicity. Results show that masked atom recovery pretraining and multi-task learning offer promising solutions to enhance model capacity and address data scarcity issues. Two novel application domain (AD) parameters, termed PCA-AD and LDS, were proposed to improve prediction reliability of TOX-BERT with accuracy surpassing 90 % and mean absolute error (MAE) below 0.52. TOX-BERT was applied to 18,905 IECSC chemicals, revealing distinct toxicity relationships that align with experimental studies such as those between cardiotoxicity and acute ecotoxicity. In addition to previous PBT screening, 156 potential high-risk chemicals for specific endpoint were identified covering 7 categories. Furthermore, a SMILES-based toxicity site detection approach was developed for structural toxicity analysis. These advancements carry profound implications to address challenges faced by current data-driven toxicity prediction models. TOX-BERT emerges as a valuable tool for more comprehensive, reliable, and applicable predictions of health and ecological toxicity in chemical risk assessment and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助孔雀翎采纳,获得10
1秒前
韦凌青发布了新的文献求助10
2秒前
www发布了新的文献求助10
2秒前
3秒前
xianjingli完成签到,获得积分10
4秒前
美好芳发布了新的文献求助10
4秒前
4秒前
我爱科研完成签到,获得积分10
5秒前
6秒前
LI发布了新的文献求助10
7秒前
无心发布了新的文献求助10
7秒前
星辰大海应助xixi采纳,获得50
7秒前
苦海完成签到,获得积分10
7秒前
充电宝应助Jin采纳,获得10
7秒前
12332145678完成签到,获得积分10
8秒前
思源应助韦凌青采纳,获得10
8秒前
FashionBoy应助科研小白采纳,获得10
8秒前
rhrhn发布了新的文献求助10
8秒前
情怀应助drjj采纳,获得10
9秒前
9秒前
10秒前
仁爱海莲发布了新的文献求助10
10秒前
无花果应助背后的巧荷采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
科研通AI2S应助VIP采纳,获得10
11秒前
12秒前
hello完成签到,获得积分10
13秒前
子不语完成签到,获得积分10
13秒前
LL完成签到,获得积分10
14秒前
rhrhn完成签到,获得积分10
14秒前
结实的蘑菇完成签到,获得积分10
15秒前
pluto完成签到,获得积分0
15秒前
15秒前
16秒前
活力的果汁关注了科研通微信公众号
16秒前
啥,这都是啥完成签到,获得积分10
16秒前
WYL发布了新的文献求助30
16秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147695
求助须知:如何正确求助?哪些是违规求助? 2798784
关于积分的说明 7831337
捐赠科研通 2455622
什么是DOI,文献DOI怎么找? 1306889
科研通“疑难数据库(出版商)”最低求助积分说明 627943
版权声明 601587