Development a nomogram prognostic model for survival in heart failure patients based on the HF-ACTION data

列线图 医学 比例危险模型 队列 心力衰竭 内科学 置信区间 体质指数 心脏病学 物理疗法
作者
Ting Cheng,Dongdong Yu,Jun Tan,Shaojun Liao,Li Zhou,Wenwei Ouyang,Zehuai Wen
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02593-1
摘要

Abstract Background The risk assessment for survival in heart failure (HF) remains one of the key focuses of research. This study aims to develop a simple and feasible nomogram model for survival in HF based on the Heart Failure-A Controlled Trial Investigating Outcomes of Exercise TraiNing (HF-ACTION) to support clinical decision-making. Methods The HF patients were extracted from the HF-ACTION database and randomly divided into a training cohort and a validation cohort at a ratio of 7:3. Multivariate Cox regression was used to identify and integrate significant prognostic factors to form a nomogram, which was displayed in the form of a static nomogram. Bootstrap resampling (resampling = 1000) and cross-validation was used to internally validate the model. The prognostic performance of the model was measured by the concordance index (C-index), calibration curve, and the decision curve analysis. Results There were 1394 patients with HF in the overall analysis. Seven prognostic factors, which included age, body mass index (BMI), sex, diastolic blood pressure (DBP), exercise duration, peak exercise oxygen consumption (peak VO 2 ), and loop diuretic, were identified and applied to the nomogram construction based on the training cohort. The C-index of this model in the training cohort was 0.715 (95% confidence interval (CI): 0.700, 0.766) and 0.662 (95% CI: 0.646, 0.752) in the validation cohort. The area under the ROC curve (AUC) value of 365- and 730-day survival is (0.731, 0.734) and (0.640, 0.693) respectively in the training cohort and validation cohort. The calibration curve showed good consistency between nomogram-predicted survival and actual observed survival. The decision curve analysis (DCA) revealed net benefit is higher than the reference line in a narrow range of cutoff probabilities and the result of cross-validation indicates that the model performance is relatively robust. Conclusions This study created a nomogram prognostic model for survival in HF based on a large American population, which can provide additional decision information for the risk prediction of HF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助huangyue采纳,获得10
1秒前
张匀继完成签到,获得积分10
1秒前
烟花应助Davidjun采纳,获得10
2秒前
2秒前
jianlong0206完成签到 ,获得积分10
4秒前
xiaosun完成签到,获得积分10
5秒前
石飞飞完成签到,获得积分10
5秒前
5秒前
asqw完成签到,获得积分10
6秒前
自然烨华发布了新的文献求助10
7秒前
缓慢思枫完成签到,获得积分10
8秒前
生动的以云完成签到 ,获得积分10
8秒前
9秒前
ygh完成签到,获得积分10
9秒前
9秒前
koui完成签到 ,获得积分10
10秒前
活力宝马发布了新的文献求助10
12秒前
Jasper应助asqw采纳,获得30
12秒前
Davidjun完成签到,获得积分10
12秒前
陌上花开完成签到,获得积分0
12秒前
酷炫小熊猫完成签到,获得积分20
13秒前
anlulove完成签到,获得积分10
13秒前
encorekk发布了新的文献求助10
13秒前
adgeuidek完成签到,获得积分10
14秒前
14秒前
bioli应助整齐千柳采纳,获得10
16秒前
16秒前
17秒前
沉默御姐完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
多喝水我完成签到 ,获得积分10
21秒前
21秒前
科研通AI5应助活力宝马采纳,获得30
21秒前
Sunny发布了新的文献求助10
21秒前
舒服的尔丝完成签到,获得积分10
23秒前
23秒前
23秒前
sje完成签到 ,获得积分10
24秒前
仁爱的寻凝完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109119
求助须知:如何正确求助?哪些是违规求助? 4317843
关于积分的说明 13452826
捐赠科研通 4147719
什么是DOI,文献DOI怎么找? 2272854
邀请新用户注册赠送积分活动 1274999
关于科研通互助平台的介绍 1213144