Development a nomogram prognostic model for survival in heart failure patients based on the HF-ACTION data

列线图 医学 比例危险模型 队列 心力衰竭 内科学 置信区间 体质指数 心脏病学 物理疗法
作者
Ting Cheng,Dongdong Yu,Jun Tan,Shaojun Liao,Li Zhou,Wenwei Ouyang,Zehuai Wen
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02593-1
摘要

Abstract Background The risk assessment for survival in heart failure (HF) remains one of the key focuses of research. This study aims to develop a simple and feasible nomogram model for survival in HF based on the Heart Failure-A Controlled Trial Investigating Outcomes of Exercise TraiNing (HF-ACTION) to support clinical decision-making. Methods The HF patients were extracted from the HF-ACTION database and randomly divided into a training cohort and a validation cohort at a ratio of 7:3. Multivariate Cox regression was used to identify and integrate significant prognostic factors to form a nomogram, which was displayed in the form of a static nomogram. Bootstrap resampling (resampling = 1000) and cross-validation was used to internally validate the model. The prognostic performance of the model was measured by the concordance index (C-index), calibration curve, and the decision curve analysis. Results There were 1394 patients with HF in the overall analysis. Seven prognostic factors, which included age, body mass index (BMI), sex, diastolic blood pressure (DBP), exercise duration, peak exercise oxygen consumption (peak VO 2 ), and loop diuretic, were identified and applied to the nomogram construction based on the training cohort. The C-index of this model in the training cohort was 0.715 (95% confidence interval (CI): 0.700, 0.766) and 0.662 (95% CI: 0.646, 0.752) in the validation cohort. The area under the ROC curve (AUC) value of 365- and 730-day survival is (0.731, 0.734) and (0.640, 0.693) respectively in the training cohort and validation cohort. The calibration curve showed good consistency between nomogram-predicted survival and actual observed survival. The decision curve analysis (DCA) revealed net benefit is higher than the reference line in a narrow range of cutoff probabilities and the result of cross-validation indicates that the model performance is relatively robust. Conclusions This study created a nomogram prognostic model for survival in HF based on a large American population, which can provide additional decision information for the risk prediction of HF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼醉冬发布了新的文献求助10
1秒前
1秒前
沙拉依丁完成签到,获得积分10
1秒前
zhou发布了新的文献求助10
3秒前
动人的沧海完成签到,获得积分10
4秒前
4秒前
亮亮发布了新的文献求助10
4秒前
Zero完成签到 ,获得积分10
6秒前
8秒前
吃饭了吗123完成签到,获得积分10
8秒前
高兴的海豚完成签到,获得积分10
9秒前
麦田里的守望者完成签到,获得积分10
12秒前
萧一发布了新的文献求助10
12秒前
13秒前
14秒前
乐乐应助周周不喝粥采纳,获得10
15秒前
我是老大应助12345采纳,获得10
16秒前
英姑应助萧一采纳,获得10
18秒前
ww发布了新的文献求助10
18秒前
howard发布了新的文献求助10
20秒前
22秒前
wuxunxun2015发布了新的文献求助10
23秒前
25秒前
微信研友发布了新的文献求助10
27秒前
yznfly完成签到,获得积分0
27秒前
bkagyin应助宋鹏浩采纳,获得30
28秒前
Zhou完成签到,获得积分10
28秒前
342396102发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
丘比特应助萱棚采纳,获得10
30秒前
123发布了新的文献求助10
30秒前
微信研友完成签到,获得积分10
36秒前
小马甲应助危机的语琴采纳,获得10
37秒前
37秒前
38秒前
fafa完成签到,获得积分10
40秒前
40秒前
Jackson完成签到 ,获得积分10
42秒前
12345发布了新的文献求助10
42秒前
ljq完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856886
捐赠科研通 4696312
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851