Development a nomogram prognostic model for survival in heart failure patients based on the HF-ACTION data

列线图 医学 比例危险模型 队列 心力衰竭 内科学 置信区间 体质指数 心脏病学 物理疗法
作者
Ting Cheng,Dongdong Yu,Jun Tan,Shaojun Liao,Li Zhou,Wenwei Ouyang,Zehuai Wen
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02593-1
摘要

Abstract Background The risk assessment for survival in heart failure (HF) remains one of the key focuses of research. This study aims to develop a simple and feasible nomogram model for survival in HF based on the Heart Failure-A Controlled Trial Investigating Outcomes of Exercise TraiNing (HF-ACTION) to support clinical decision-making. Methods The HF patients were extracted from the HF-ACTION database and randomly divided into a training cohort and a validation cohort at a ratio of 7:3. Multivariate Cox regression was used to identify and integrate significant prognostic factors to form a nomogram, which was displayed in the form of a static nomogram. Bootstrap resampling (resampling = 1000) and cross-validation was used to internally validate the model. The prognostic performance of the model was measured by the concordance index (C-index), calibration curve, and the decision curve analysis. Results There were 1394 patients with HF in the overall analysis. Seven prognostic factors, which included age, body mass index (BMI), sex, diastolic blood pressure (DBP), exercise duration, peak exercise oxygen consumption (peak VO 2 ), and loop diuretic, were identified and applied to the nomogram construction based on the training cohort. The C-index of this model in the training cohort was 0.715 (95% confidence interval (CI): 0.700, 0.766) and 0.662 (95% CI: 0.646, 0.752) in the validation cohort. The area under the ROC curve (AUC) value of 365- and 730-day survival is (0.731, 0.734) and (0.640, 0.693) respectively in the training cohort and validation cohort. The calibration curve showed good consistency between nomogram-predicted survival and actual observed survival. The decision curve analysis (DCA) revealed net benefit is higher than the reference line in a narrow range of cutoff probabilities and the result of cross-validation indicates that the model performance is relatively robust. Conclusions This study created a nomogram prognostic model for survival in HF based on a large American population, which can provide additional decision information for the risk prediction of HF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助kk采纳,获得10
刚刚
flyabc完成签到,获得积分10
刚刚
Hello应助cz采纳,获得10
刚刚
刚刚
化学天空完成签到,获得积分10
1秒前
1秒前
1秒前
zljgy2000发布了新的文献求助10
2秒前
2秒前
小二郎应助zbr采纳,获得10
2秒前
呆萌安双发布了新的文献求助10
2秒前
京城不降雪c完成签到,获得积分10
3秒前
yaya发布了新的文献求助10
3秒前
Owen应助大炮弹采纳,获得10
3秒前
听风雨发布了新的文献求助10
3秒前
羡鱼发布了新的文献求助10
3秒前
缥缈的水彤完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
失眠的数据线完成签到,获得积分10
4秒前
4秒前
烁烁子完成签到,获得积分20
5秒前
胡春柳应助lucinda采纳,获得10
5秒前
1351567822应助啊懂采纳,获得80
5秒前
俭朴外绣发布了新的文献求助10
5秒前
乐乐应助复杂海豚采纳,获得10
5秒前
5秒前
6秒前
dh发布了新的文献求助10
6秒前
Stefano完成签到,获得积分10
6秒前
6秒前
完美世界应助念薇采纳,获得10
6秒前
郭倍坚发布了新的文献求助10
7秒前
年轻绮南完成签到,获得积分10
7秒前
ROSE完成签到 ,获得积分10
7秒前
斯文败类应助红3采纳,获得10
8秒前
Ccc发布了新的文献求助30
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827