Development a nomogram prognostic model for survival in heart failure patients based on the HF-ACTION data

列线图 医学 比例危险模型 队列 心力衰竭 内科学 置信区间 体质指数 心脏病学 物理疗法
作者
Ting Cheng,Dongdong Yu,Jun Tan,Shaojun Liao,Li Zhou,Wenwei Ouyang,Zehuai Wen
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02593-1
摘要

Abstract Background The risk assessment for survival in heart failure (HF) remains one of the key focuses of research. This study aims to develop a simple and feasible nomogram model for survival in HF based on the Heart Failure-A Controlled Trial Investigating Outcomes of Exercise TraiNing (HF-ACTION) to support clinical decision-making. Methods The HF patients were extracted from the HF-ACTION database and randomly divided into a training cohort and a validation cohort at a ratio of 7:3. Multivariate Cox regression was used to identify and integrate significant prognostic factors to form a nomogram, which was displayed in the form of a static nomogram. Bootstrap resampling (resampling = 1000) and cross-validation was used to internally validate the model. The prognostic performance of the model was measured by the concordance index (C-index), calibration curve, and the decision curve analysis. Results There were 1394 patients with HF in the overall analysis. Seven prognostic factors, which included age, body mass index (BMI), sex, diastolic blood pressure (DBP), exercise duration, peak exercise oxygen consumption (peak VO 2 ), and loop diuretic, were identified and applied to the nomogram construction based on the training cohort. The C-index of this model in the training cohort was 0.715 (95% confidence interval (CI): 0.700, 0.766) and 0.662 (95% CI: 0.646, 0.752) in the validation cohort. The area under the ROC curve (AUC) value of 365- and 730-day survival is (0.731, 0.734) and (0.640, 0.693) respectively in the training cohort and validation cohort. The calibration curve showed good consistency between nomogram-predicted survival and actual observed survival. The decision curve analysis (DCA) revealed net benefit is higher than the reference line in a narrow range of cutoff probabilities and the result of cross-validation indicates that the model performance is relatively robust. Conclusions This study created a nomogram prognostic model for survival in HF based on a large American population, which can provide additional decision information for the risk prediction of HF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳花完成签到,获得积分10
刚刚
shouyi886完成签到,获得积分10
刚刚
cx完成签到,获得积分10
刚刚
露露完成签到,获得积分20
刚刚
jun完成签到,获得积分10
刚刚
暴躁的冰兰完成签到 ,获得积分10
1秒前
朱孟研应助聪明的宛菡采纳,获得10
1秒前
123123完成签到 ,获得积分10
2秒前
orixero应助我是笨蛋采纳,获得30
2秒前
留白完成签到,获得积分10
2秒前
复杂平凡完成签到,获得积分10
3秒前
terryok完成签到 ,获得积分10
3秒前
liu完成签到,获得积分10
3秒前
fd163c给fd163c的求助进行了留言
7秒前
7秒前
开心向真完成签到,获得积分10
7秒前
认真丹亦完成签到 ,获得积分10
8秒前
addi111完成签到,获得积分10
9秒前
10秒前
小柯基学从零学起完成签到 ,获得积分10
10秒前
Emily完成签到,获得积分10
11秒前
易吴鱼完成签到 ,获得积分10
12秒前
RayLam完成签到,获得积分10
12秒前
斯文败类应助kaidaniel采纳,获得30
12秒前
没朴子完成签到,获得积分10
13秒前
娇娇完成签到,获得积分10
14秒前
黄花完成签到 ,获得积分10
15秒前
甜晞完成签到,获得积分10
15秒前
呆呆发布了新的文献求助10
16秒前
哼哼啊嗯哼啊完成签到 ,获得积分10
16秒前
roger完成签到,获得积分10
16秒前
17秒前
20秒前
今天吃不饱完成签到 ,获得积分10
20秒前
pufanlg完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
刘雪松完成签到,获得积分10
23秒前
进击的PhD应助聪明的宛菡采纳,获得50
23秒前
Ivy完成签到,获得积分10
23秒前
聪慧的石头完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645203
求助须知:如何正确求助?哪些是违规求助? 4768026
关于积分的说明 15026718
捐赠科研通 4803706
什么是DOI,文献DOI怎么找? 2568447
邀请新用户注册赠送积分活动 1525738
关于科研通互助平台的介绍 1485378