More to Lose: The Adverse Effect of High Performance Ranking on Employees’ Preimplementation Attitudes Toward the Integration of Powerful AI Aids

排名(信息检索) 心理学 社会心理学 知识管理 业务 营销 公共关系 计算机科学 人工智能 政治学
作者
Ilanit SimanTov‐Nachlieli
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
被引量:6
标识
DOI:10.1287/orsc.2023.17515
摘要

Despite the growing availability of algorithm-augmented work, algorithm aversion is prevalent among employees, hindering successful implementations of powerful artificial intelligence (AI) aids. Applying a social comparison perspective, this article examines the adverse effect of employees’ high performance ranking on their preimplementation attitudes toward the integration of powerful AI aids within their area of advantage. Five studies, using a weight estimation simulation (Studies 1–3), recall of actual job tasks (Study 4), and a workplace scenario (Study 5), provided consistent causal evidence for this effect by manipulating performance ranking (performance advantage compared with peers versus no advantage). Studies 3–4 revealed that this effect was driven in part by employees’ perceived potential loss of standing compared with peers, a novel social-based mechanism complementing the extant explanation operating via one’s confidence in own (versus AI) ability. Stronger causal evidence for this mechanism was provided in Study 5 using a “moderation-of-process” design. It showed that the adverse effect of high performance ranking on preimplementation AI attitudes was reversed when bolstering the stability of future performance rankings (presumably counteracting one’s concern with potential loss of standing). Finally, pointing to the power of symbolic threats, this adverse effect was evident both in the absence of financial incentives for high performance (Study 1) and in various incentive-based settings (Studies 2–3). Implications for understanding and managing high performers’ aversion toward the integration of powerful algorithmic aids are discussed. Funding: This work was supported by the Coller Foundation. Supplemental Material: The supplemental material is available at https://doi.org/10.1287/orsc.2023.17515 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Orange应助落俗采纳,获得10
2秒前
板凳完成签到 ,获得积分10
2秒前
3秒前
阿北完成签到,获得积分10
4秒前
5秒前
勤劳宛菡完成签到 ,获得积分10
7秒前
wang0626完成签到 ,获得积分10
7秒前
8秒前
9秒前
xi发布了新的文献求助10
9秒前
汉堡包应助duanhuiyuan采纳,获得10
10秒前
11秒前
Rondab应助yyh采纳,获得30
11秒前
从来都不会放弃zr完成签到,获得积分10
12秒前
hh发布了新的文献求助10
13秒前
guoxing完成签到,获得积分10
14秒前
兰0917发布了新的文献求助10
15秒前
16秒前
小晓完成签到,获得积分10
16秒前
Unicorn完成签到 ,获得积分10
16秒前
黄花花发布了新的文献求助10
18秒前
19秒前
19秒前
22秒前
研友_VZG7GZ应助ZAL采纳,获得10
22秒前
25秒前
迅速靖琪发布了新的文献求助10
27秒前
mmr发布了新的文献求助10
28秒前
静然完成签到 ,获得积分10
29秒前
abcdefg发布了新的文献求助10
32秒前
34秒前
34秒前
香蕉觅云应助闪闪的发夹采纳,获得10
37秒前
研友_Zl1Da8完成签到,获得积分10
37秒前
Akim应助suonik采纳,获得30
38秒前
霍华淞发布了新的文献求助10
38秒前
英俊的咖啡豆完成签到 ,获得积分10
39秒前
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993454
求助须知:如何正确求助?哪些是违规求助? 3534113
关于积分的说明 11264719
捐赠科研通 3273986
什么是DOI,文献DOI怎么找? 1806200
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662