AirECG: Contactless Electrocardiogram for Cardiac Disease Monitoring via mmWave Sensing and Cross-domain Diffusion Model

计算机科学 频域 人工智能 心脏监护 随机性 模式识别(心理学) 心脏病学 医学 计算机视觉 数学 统计
作者
Langcheng Zhao,Rui Lyu,H.D.W. van der Lei,Qi Lin,Anfu Zhou,Huadóng Ma,Jingjia Wang,Xiangbin Meng,Chunli Shao,Yi-Da Tang,Guoxuan Chi,Zheng Yang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:8 (3): 1-27 被引量:2
标识
DOI:10.1145/3678550
摘要

The electrocardiogram (ECG) has always served as a crucial biomedical examination for cardiac diseases monitoring and diagnosing. Typical ECG measurement requires attaching electrodes to the body, which is inconvenient for long-term monitoring. Recent wireless sensing maps wireless signals reflected from human chest into electrical activities of heart so as to reconstruct ECG contactlessly. While making great progress, we find existing works are effective only for healthy populations with normal ECG, but fall short when confronted with the most desired usage scenario: reconstructing ECG accurately for people with cardiac diseases such as atrial fibrillation, premature ventricular beat. To bridge the gap, we propose AirECG, which moves forward to reconstruct ECG for both healthy people and even cardiac patients with morbid ECG, i.e., irregular rhythm and anomalous ECG waveform, via contactless millimeter-wave sensing. To realize AirECG, we first custom-design a cross-domain diffusion model that can perform multiple iteration denoising inference, in contrast with the single-step generative models widely used in previous works. In this way, AirECG is able to identify and eliminate the distortion due to the unstable and irregular cardiac activities, so as to synthesize ECG even during abnormal beats. Furthermore, we enhance the determinacy of AirECG, i.e., to generate high-fidelity ECG, by designing a calibration guidance mechanism to combat the inherent randomness issue of the probabilistic diffusion model. Empirical evaluation demonstrates AirECG's ability of ECG synthesis with Pearson correlation coefficient (PCC) of 0.955 for normal beats. Especially for abnormal beats, the PCC still exhibits a strong correlation of 0.860, with 15.0%~21.1% improvement compared with state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助xiaomili采纳,获得10
1秒前
婷崽加油完成签到,获得积分10
1秒前
南风发布了新的文献求助10
1秒前
拉长的问晴完成签到,获得积分10
2秒前
loin完成签到,获得积分10
3秒前
3秒前
抹茶泡泡完成签到 ,获得积分10
3秒前
tyler2000发布了新的文献求助10
4秒前
南至发布了新的文献求助10
4秒前
4秒前
斯文败类应助L3213036054采纳,获得10
5秒前
shan发布了新的文献求助10
5秒前
橙子发布了新的文献求助30
5秒前
可耐的冰萍完成签到,获得积分10
6秒前
彭于彦祖应助婷崽加油采纳,获得60
6秒前
qaa2274278941发布了新的文献求助10
7秒前
自觉葶完成签到 ,获得积分20
7秒前
易子发布了新的文献求助10
10秒前
YJJ完成签到,获得积分20
10秒前
易旸完成签到,获得积分10
10秒前
10秒前
策略发布了新的文献求助10
11秒前
11秒前
搜集达人应助若什么至采纳,获得10
11秒前
汽泡完成签到,获得积分10
11秒前
isvv完成签到,获得积分10
11秒前
11秒前
科目三应助南至采纳,获得10
12秒前
surfing0210应助rookieLi采纳,获得10
12秒前
Yuuuu完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
研友_8KX15L完成签到,获得积分10
14秒前
高贵的思天完成签到,获得积分10
14秒前
15秒前
CodeCraft应助纯真书兰采纳,获得10
15秒前
风趣姿完成签到 ,获得积分10
16秒前
16秒前
科目三应助细腻的寻真采纳,获得10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620