体内
催化作用
电化学
Atom(片上系统)
多巴胺
炎症
化学
纳米技术
材料科学
生物物理学
生物化学
神经科学
医学
生物
计算机科学
电极
物理化学
生物技术
免疫学
嵌入式系统
作者
Xiaolong Gao,Huan Wei,Wenjie Ma,Wenjie Wu,Wenliang Ji,Junjie Mao,Ping Yu,Lanqun Mao
标识
DOI:10.1038/s41467-024-52279-5
摘要
Electrochemical methods with tissue-implantable microelectrodes provide an excellent platform for real-time monitoring the neurochemical dynamics in vivo due to their superior spatiotemporal resolution and high selectivity and sensitivity. Nevertheless, electrode implantation inevitably damages the brain tissue, upregulates reactive oxygen species level, and triggers neuroinflammatory response, resulting in unreliable quantification of neurochemical events. Herein, we report a multifunctional sensing platform for inflammation-free in vivo analysis with atomic-level engineered Fe single-atom catalyst that functions as both single-atom nanozyme with antioxidative activity and electrode material for dopamine oxidation. Through high-temperature pyrolysis and catalytic performance screening, we fabricate a series of Fe single-atom nanozymes with different coordination configurations and find that the Fe single-atom nanozyme with FeN
科研通智能强力驱动
Strongly Powered by AbleSci AI