A novel computed tomography enterography radiomics combining intestinal and creeping fat features could predict surgery risk in patients with Crohn’s disease

医学 接收机工作特性 队列 无线电技术 克罗恩病 回顾性队列研究 曲线下面积 放射科 危险分层 磁共振成像 疾病 核医学 内科学
作者
Jin-fang Du,Fangyi Xu,Xia Qiu,Xi Hu,Liping Deng,Hongjie Hu
出处
期刊:European Journal of Gastroenterology & Hepatology [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/meg.0000000000002839
摘要

Objective The objective of this study is to segment creeping fat and intestinal wall on computed tomography enterography (CTE) and develop a radiomic model to predict 1-year surgery risk in patients with Crohn’s disease. Methods This retrospective study included 135 Crohn’s disease patients who underwent CTE between January and December 2021 (training cohort) and 69 patients between January and June 2022 (test cohort). A total of 1874 radiomic features were extracted from the intestinal wall and creeping fat respectively on the venous phase CTE images, and radiomic models were constructed based on the selected features using the Boruta and extreme gradient boosting algorithms. The combined models were established by integrating clinical predictors and radiomic models. The receiver operating characteristic curve, calibration curve, and decision curve analyses were used to compare the predictive performance of models. Results In the training and test cohorts, the area under the curve (AUC) values of the creeping fat radiomic model for surgery risk stratification were 0.916 and 0.822, respectively, similar to the intestinal model with AUC values of 0.889 and 0.822. Moreover, the combined radiomic model was superior to the single models, showing good discrimination with the highest AUC values (training cohort: 0.963; test cohort: 0.882). Addition of clinical predictors to the radiomic models failed to significantly improve the diagnostic ability. Conclusion The CTE-based creeping fat radiomic model provided additional information to the intestinal radiomic model, and their combined radiomic model enables accurate surgery risk prediction of Crohn’s disease patients within 1 year of CTE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TTw发布了新的文献求助10
刚刚
刚刚
佳亮辰完成签到,获得积分10
刚刚
稳重鹏煊发布了新的文献求助10
1秒前
3秒前
3秒前
绾绾发布了新的文献求助10
3秒前
zhang完成签到,获得积分10
4秒前
思源应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
cocolu应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
cocolu应助科研通管家采纳,获得10
5秒前
爆米花应助li采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
科研通AI2S应助hh采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得30
5秒前
Akim应助科研通管家采纳,获得10
5秒前
今后应助安安采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得30
6秒前
cocolu应助科研通管家采纳,获得10
6秒前
CWNU_HAN应助科研通管家采纳,获得30
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Lee发布了新的文献求助10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得30
6秒前
6秒前
俊逸沅完成签到,获得积分10
7秒前
Kimi完成签到,获得积分10
7秒前
8秒前
研友_VZG7GZ应助TTw采纳,获得10
9秒前
Akim应助咚咚采纳,获得10
9秒前
9秒前
老铁完成签到 ,获得积分10
9秒前
大胆楷瑞发布了新的文献求助10
10秒前
10秒前
11秒前
Hello应助susui采纳,获得10
12秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3325661
求助须知:如何正确求助?哪些是违规求助? 2956332
关于积分的说明 8580190
捐赠科研通 2634297
什么是DOI,文献DOI怎么找? 1441859
科研通“疑难数据库(出版商)”最低求助积分说明 667952
邀请新用户注册赠送积分活动 654791