Salp Swarm Algorithm-Based Kalman Filter for Seamless Multi-Source Fusion Positioning with Global Positioning System/Inertial Navigation System/Smartphones

卡尔曼滤波器 全球定位系统 计算机科学 实时计算 惯性导航系统 惯性参考系 全球导航卫星系统应用 传感器融合 精密点定位 惯性测量装置 计算机视觉 航位推算 混合定位系统 人工智能 定位系统 工程类 电信 物理 量子力学 结构工程 节点(物理)
作者
Jin Wang,Xiyi Dong,Xiaochun Lu,Jin Lu,Jian Xue,Jianbo Du
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (18): 3511-3511
标识
DOI:10.3390/rs16183511
摘要

With the rapid development of high-precision positioning service applications, there is a growing demand for accurate and seamless positioning services in indoor and outdoor (I/O) scenarios. To address the problem of low localization accuracy in the I/O transition area and the difficulty of achieving fast and accurate I/O switching, a Kalman filter based on the salp swarm algorithm (SSA) for seamless multi-source fusion positioning of global positioning system/inertial navigation system/smartphones (GPS/INS/smartphones) is proposed. First, an Android smartphone was used to collect sensor measurement data, such as light, magnetometer, and satellite signal-to-noise ratios in different environments; then, the change rules of the data were analyzed, and an I/O detection algorithm based on the SSA was used to identify the locations of users. Second, the proposed I/O detection service was used as an automatic switching mechanism, and a seamless indoor–outdoor localization scheme based on improved Kalman filtering with K-L divergence is proposed. The experimental results showed that the SSA-based I/O switching model was able to accurately recognize environmental differences, and the average accuracy of judgment reached 97.04%. The localization method achieved accurate and continuous seamless navigation and improved the average localization accuracy by 53.79% compared with a traditional GPS/INS system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸣笛应助rurui采纳,获得10
1秒前
haochi发布了新的文献求助30
2秒前
惟依完成签到,获得积分10
5秒前
FashionBoy应助壳儿小小采纳,获得10
9秒前
12秒前
自由小萱完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
哈哈Int完成签到 ,获得积分10
16秒前
16秒前
domingo发布了新的文献求助10
17秒前
生动的凡发布了新的文献求助20
17秒前
Connie发布了新的文献求助10
18秒前
sqf1209发布了新的文献求助10
18秒前
脑洞疼应助nml采纳,获得10
19秒前
工藤新一发布了新的文献求助10
20秒前
一纸空文完成签到,获得积分10
22秒前
22秒前
23秒前
小蘑菇应助domingo采纳,获得30
24秒前
枕安完成签到,获得积分10
25秒前
zm完成签到,获得积分10
26秒前
28秒前
智慧莎发布了新的文献求助10
30秒前
30秒前
生动的凡完成签到,获得积分10
31秒前
s1kl完成签到,获得积分10
31秒前
33秒前
慕青应助司空铭采纳,获得10
33秒前
Jasper应助科研通管家采纳,获得10
34秒前
星辰大海应助科研通管家采纳,获得10
34秒前
34秒前
vv关闭了vv文献求助
34秒前
我是老大应助科研通管家采纳,获得10
34秒前
小马甲应助科研通管家采纳,获得10
34秒前
李爱国应助科研通管家采纳,获得10
35秒前
bkagyin应助科研通管家采纳,获得10
35秒前
35秒前
丘比特应助科研通管家采纳,获得10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629