Salp Swarm Algorithm-Based Kalman Filter for Seamless Multi-Source Fusion Positioning with Global Positioning System/Inertial Navigation System/Smartphones

卡尔曼滤波器 计算机科学 惯性导航系统 惯性参考系 传感器融合 计算机视觉 人工智能 算法 物理 量子力学
作者
Jin Wang,Xiyi Dong,Xiaochun Lu,Jin Lu,Jian Xue,Jianbo Du
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (18): 3511-3511
标识
DOI:10.3390/rs16183511
摘要

With the rapid development of high-precision positioning service applications, there is a growing demand for accurate and seamless positioning services in indoor and outdoor (I/O) scenarios. To address the problem of low localization accuracy in the I/O transition area and the difficulty of achieving fast and accurate I/O switching, a Kalman filter based on the salp swarm algorithm (SSA) for seamless multi-source fusion positioning of global positioning system/inertial navigation system/smartphones (GPS/INS/smartphones) is proposed. First, an Android smartphone was used to collect sensor measurement data, such as light, magnetometer, and satellite signal-to-noise ratios in different environments; then, the change rules of the data were analyzed, and an I/O detection algorithm based on the SSA was used to identify the locations of users. Second, the proposed I/O detection service was used as an automatic switching mechanism, and a seamless indoor–outdoor localization scheme based on improved Kalman filtering with K-L divergence is proposed. The experimental results showed that the SSA-based I/O switching model was able to accurately recognize environmental differences, and the average accuracy of judgment reached 97.04%. The localization method achieved accurate and continuous seamless navigation and improved the average localization accuracy by 53.79% compared with a traditional GPS/INS system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wqsnlyq完成签到 ,获得积分10
2秒前
akmdh完成签到,获得积分10
2秒前
4秒前
4秒前
Felix发布了新的文献求助30
8秒前
10秒前
斐_应助qh5706采纳,获得10
11秒前
11秒前
13秒前
lipppfff发布了新的文献求助10
16秒前
王悦靓发布了新的文献求助10
17秒前
老阶梯应助研友icc采纳,获得10
19秒前
积极思柔发布了新的文献求助10
19秒前
传统的松鼠完成签到 ,获得积分10
21秒前
小马甲应助chodiernal采纳,获得10
22秒前
lipppfff完成签到,获得积分10
25秒前
rfgfg完成签到 ,获得积分10
25秒前
王悦靓完成签到,获得积分10
26秒前
迷路又菱完成签到,获得积分10
26秒前
28秒前
28秒前
ylyla完成签到 ,获得积分10
32秒前
秋澄完成签到 ,获得积分10
32秒前
33秒前
33秒前
谭你脑瓜崩完成签到,获得积分10
34秒前
学术底层fw完成签到,获得积分10
36秒前
38秒前
不配.应助pysa采纳,获得10
40秒前
41秒前
44秒前
44秒前
ssk完成签到,获得积分10
45秒前
adagio完成签到,获得积分10
47秒前
田様应助强健的幼南采纳,获得10
47秒前
xYueea发布了新的文献求助10
47秒前
zhou完成签到,获得积分10
48秒前
50秒前
52秒前
53秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180826
求助须知:如何正确求助?哪些是违规求助? 2831048
关于积分的说明 7982721
捐赠科研通 2492898
什么是DOI,文献DOI怎么找? 1329918
科研通“疑难数据库(出版商)”最低求助积分说明 635836
版权声明 602954