TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers

人工智能 建筑 分割 变压器 计算机科学 图像分割 计算机视觉 工程类 电气工程 艺术 视觉艺术 电压
作者
Jieneng Chen,Jieru Mei,Xianhang Li,Yongyi Lu,Qihang Yu,Qingyue Wei,Xiangde Luo,Yutong Xie,Ehsan Adeli,Yan Wang,Matthew P. Lungren,Shaoting Zhang,Lei Xing,Le Lü,Alan Yuille,Yuyin Zhou
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103280-103280 被引量:11
标识
DOI:10.1016/j.media.2024.103280
摘要

Medical image segmentation is crucial for healthcare, yet convolution-based methods like U-Net face limitations in modeling long-range dependencies. To address this, Transformers designed for sequence-to-sequence predictions have been integrated into medical image segmentation. However, a comprehensive understanding of Transformers' self-attention in U-Net components is lacking. TransUNet, first introduced in 2021, is widely recognized as one of the first models to integrate Transformer into medical image analysis. In this study, we present the versatile framework of TransUNet that encapsulates Transformers' self-attention into two key modules: (1) a Transformer encoder tokenizing image patches from a convolution neural network (CNN) feature map, facilitating global context extraction, and (2) a Transformer decoder refining candidate regions through cross-attention between proposals and U-Net features. These modules can be flexibly inserted into the U-Net backbone, resulting in three configurations: Encoder-only, Decoder-only, and Encoder+Decoder. TransUNet provides a library encompassing both 2D and 3D implementations, enabling users to easily tailor the chosen architecture. Our findings highlight the encoder's efficacy in modeling interactions among multiple abdominal organs and the decoder's strength in handling small targets like tumors. It excels in diverse medical applications, such as multi-organ segmentation, pancreatic tumor segmentation, and hepatic vessel segmentation. Notably, our TransUNet achieves a significant average Dice improvement of 1.06% and 4.30% for multi-organ segmentation and pancreatic tumor segmentation, respectively, when compared to the highly competitive nn-UNet, and surpasses the top-1 solution in the BrasTS2021 challenge. 2D/3D Code and models are available at https://github.com/Beckschen/TransUNet and https://github.com/Beckschen/TransUNet-3D, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yuan发布了新的文献求助10
1秒前
3秒前
5秒前
6秒前
白辞完成签到,获得积分10
6秒前
在水一方应助谦让的小姜采纳,获得10
7秒前
眼睛大的天抒应助孟孟采纳,获得10
7秒前
一顿吃不饱完成签到,获得积分0
8秒前
宇哈哈发布了新的文献求助10
8秒前
9秒前
苗秋实发布了新的文献求助10
10秒前
PGS发布了新的文献求助10
11秒前
小小的梦想完成签到,获得积分10
14秒前
曼夭非夭完成签到,获得积分10
15秒前
www发布了新的文献求助10
15秒前
轻松冰夏发布了新的文献求助10
15秒前
16秒前
真实的逍遥关注了科研通微信公众号
19秒前
在水一方应助白樱恋曲采纳,获得10
19秒前
传奇3应助蹦蹦采纳,获得10
19秒前
脑洞疼应助宇哈哈采纳,获得10
20秒前
20秒前
21秒前
22秒前
香蕉觅云应助ava采纳,获得20
22秒前
不配.应助腼腆的老虎采纳,获得20
23秒前
jimmy发布了新的文献求助10
25秒前
大模型应助Yi采纳,获得10
25秒前
ww4566发布了新的文献求助10
26秒前
27秒前
xjcy应助干净昊强采纳,获得10
27秒前
加肥猫1992完成签到,获得积分10
28秒前
田様应助abbyi采纳,获得30
29秒前
共享精神应助二行采纳,获得10
29秒前
zzt发布了新的文献求助10
29秒前
故里发布了新的文献求助10
30秒前
领导范儿应助Jun55采纳,获得10
31秒前
共享精神应助科研通管家采纳,获得30
31秒前
慕青应助科研通管家采纳,获得10
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046