Toward Multilabel Classification for Multiple Disease Prediction Using Gut Microbiota Profiles

肠道菌群 疾病 计算机科学 计算生物学 人工智能 模式识别(心理学) 生物 医学 内科学 免疫学
作者
Zhi-An Huang,Pengwei Hu,Lun Hu,Zhu-Hong You,Kay Chen Tan,Yu‐An Huang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3453967
摘要

Advancements in high-throughput technologies have yielded large-scale human gut microbiota profiles, sparking considerable interest in exploring the relationship between the gut microbiome and complex human diseases. Through extracting and integrating knowledge from complex microbiome data, existing machine learning (ML)-based studies have demonstrated their effectiveness in the precise identification of high-risk individuals. However, these approaches struggle to address the heterogeneity and sparsity of microbial features and explore the intrinsic relatedness among human diseases. In this work, we reframe human gut microbiome-based disease detection as a multilabel classification (MLC) problem and integrate a range of innovative techniques within the proposed MLC framework, aptly named GutMLC. Specifically, the entity semantic similarity as priori knowledge is incorporated into multilabel feature selection and loss functions by capturing the shared attributes and inherent associations among diseases and microbes. To tackle the issue of label imbalance, both within and between labels, we adapt the focal loss (FL) function for MLC using debiased inverse weighting. Extensive experiment results consistently demonstrate the competitive performance of GutMLC in comparison with commonly used MLC and single-label classification (SLC) algorithms. This work seeks to unlock the potential of gut microbiota as robust biomarkers for multiple disease prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助rudjs采纳,获得10
1秒前
1秒前
zsyzxb发布了新的文献求助10
2秒前
东东发布了新的文献求助10
2秒前
zena92发布了新的文献求助10
3秒前
锤子米完成签到,获得积分10
3秒前
3秒前
赤练仙子完成签到,获得积分10
5秒前
MnO2fff应助zsyzxb采纳,获得20
8秒前
kingwill应助zsyzxb采纳,获得20
8秒前
顺利鱼完成签到,获得积分10
9秒前
11秒前
12秒前
Xx.完成签到,获得积分10
13秒前
星辰大海应助内向凌兰采纳,获得10
13秒前
13秒前
wuzhizhiya完成签到,获得积分10
14秒前
15秒前
rudjs发布了新的文献求助10
15秒前
18秒前
Ava应助何糖采纳,获得10
18秒前
桐桐应助美丽的芷烟采纳,获得10
18秒前
野子完成签到,获得积分10
19秒前
情怀应助小D采纳,获得30
20秒前
yuan发布了新的文献求助10
20秒前
berry发布了新的文献求助10
21秒前
21秒前
淡淡采白发布了新的文献求助10
22秒前
思源应助勤恳慕蕊采纳,获得10
22秒前
知犯何逆完成签到 ,获得积分10
23秒前
啊哈完成签到,获得积分10
23秒前
24秒前
24秒前
Draven完成签到 ,获得积分10
24秒前
tmpstlml发布了新的文献求助10
25秒前
张红梨完成签到,获得积分10
25秒前
迷迷完成签到,获得积分20
26秒前
26秒前
科研通AI2S应助chen采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808