清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Toward Multilabel Classification for Multiple Disease Prediction Using Gut Microbiota Profiles

肠道菌群 疾病 计算机科学 计算生物学 人工智能 模式识别(心理学) 生物 医学 内科学 免疫学
作者
Zhi-An Huang,Pengwei Hu,Lun Hu,Zhu-Hong You,Kay Chen Tan,Yu‐An Huang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:5
标识
DOI:10.1109/tnnls.2024.3453967
摘要

Advancements in high-throughput technologies have yielded large-scale human gut microbiota profiles, sparking considerable interest in exploring the relationship between the gut microbiome and complex human diseases. Through extracting and integrating knowledge from complex microbiome data, existing machine learning (ML)-based studies have demonstrated their effectiveness in the precise identification of high-risk individuals. However, these approaches struggle to address the heterogeneity and sparsity of microbial features and explore the intrinsic relatedness among human diseases. In this work, we reframe human gut microbiome-based disease detection as a multilabel classification (MLC) problem and integrate a range of innovative techniques within the proposed MLC framework, aptly named GutMLC. Specifically, the entity semantic similarity as priori knowledge is incorporated into multilabel feature selection and loss functions by capturing the shared attributes and inherent associations among diseases and microbes. To tackle the issue of label imbalance, both within and between labels, we adapt the focal loss (FL) function for MLC using debiased inverse weighting. Extensive experiment results consistently demonstrate the competitive performance of GutMLC in comparison with commonly used MLC and single-label classification (SLC) algorithms. This work seeks to unlock the potential of gut microbiota as robust biomarkers for multiple disease prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
linkman发布了新的文献求助10
18秒前
19秒前
jjj完成签到,获得积分10
37秒前
yiyixt完成签到 ,获得积分10
51秒前
方白秋完成签到,获得积分0
1分钟前
原子超人完成签到,获得积分10
1分钟前
hehe完成签到,获得积分10
1分钟前
Jasper应助joysa采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
2分钟前
2分钟前
HZ发布了新的文献求助10
2分钟前
2分钟前
叶千山完成签到 ,获得积分10
2分钟前
joysa发布了新的文献求助10
2分钟前
HZ完成签到,获得积分20
2分钟前
量子星尘发布了新的文献求助10
4分钟前
Criminology34应助阿泽采纳,获得10
4分钟前
QQWRV发布了新的文献求助30
4分钟前
ZaZa完成签到,获得积分10
4分钟前
4分钟前
pengpengyin发布了新的文献求助10
4分钟前
田様应助pengpengyin采纳,获得10
4分钟前
alanbike完成签到,获得积分10
5分钟前
miaomiao123完成签到 ,获得积分10
5分钟前
青树柠檬完成签到 ,获得积分10
5分钟前
房天川完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
herococa完成签到,获得积分0
7分钟前
Yorshka完成签到,获得积分10
7分钟前
科研通AI6应助Yorshka采纳,获得30
7分钟前
汉堡包应助Developing_human采纳,获得10
7分钟前
Akim应助火星上的幻梦采纳,获得10
7分钟前
12305014077完成签到 ,获得积分10
8分钟前
大医仁心完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644889
求助须知:如何正确求助?哪些是违规求助? 4766363
关于积分的说明 15025903
捐赠科研通 4803275
什么是DOI,文献DOI怎么找? 2568137
邀请新用户注册赠送积分活动 1525607
关于科研通互助平台的介绍 1485151