Toward Multilabel Classification for Multiple Disease Prediction Using Gut Microbiota Profiles

肠道菌群 疾病 计算机科学 计算生物学 人工智能 模式识别(心理学) 生物 医学 内科学 免疫学
作者
Zhi-An Huang,Pengwei Hu,Lun Hu,Zhu-Hong You,Kay Chen Tan,Yu‐An Huang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3453967
摘要

Advancements in high-throughput technologies have yielded large-scale human gut microbiota profiles, sparking considerable interest in exploring the relationship between the gut microbiome and complex human diseases. Through extracting and integrating knowledge from complex microbiome data, existing machine learning (ML)-based studies have demonstrated their effectiveness in the precise identification of high-risk individuals. However, these approaches struggle to address the heterogeneity and sparsity of microbial features and explore the intrinsic relatedness among human diseases. In this work, we reframe human gut microbiome-based disease detection as a multilabel classification (MLC) problem and integrate a range of innovative techniques within the proposed MLC framework, aptly named GutMLC. Specifically, the entity semantic similarity as priori knowledge is incorporated into multilabel feature selection and loss functions by capturing the shared attributes and inherent associations among diseases and microbes. To tackle the issue of label imbalance, both within and between labels, we adapt the focal loss (FL) function for MLC using debiased inverse weighting. Extensive experiment results consistently demonstrate the competitive performance of GutMLC in comparison with commonly used MLC and single-label classification (SLC) algorithms. This work seeks to unlock the potential of gut microbiota as robust biomarkers for multiple disease prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助大宝采纳,获得10
3秒前
祝一刀完成签到,获得积分10
4秒前
6秒前
8秒前
8秒前
9秒前
陳.发布了新的文献求助10
9秒前
wanci应助稳重向南采纳,获得10
11秒前
Amor发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
大个应助自由青柏采纳,获得10
14秒前
饱满破茧发布了新的文献求助10
16秒前
17秒前
17秒前
pegasus0802完成签到,获得积分10
18秒前
鹏笑发布了新的文献求助10
18秒前
爆米花应助优秀傲之采纳,获得30
19秒前
yangyajie发布了新的文献求助10
19秒前
顺利安完成签到,获得积分10
19秒前
20秒前
20秒前
邓邓完成签到,获得积分10
20秒前
21秒前
Loik完成签到,获得积分20
22秒前
Jasper完成签到,获得积分20
22秒前
ZHOUJING发布了新的文献求助10
23秒前
23秒前
yan发布了新的文献求助10
24秒前
24秒前
顺利安发布了新的文献求助10
25秒前
25秒前
斯文败类应助北石化采纳,获得100
26秒前
Loik发布了新的文献求助10
27秒前
27秒前
29秒前
宣灵薇完成签到,获得积分0
29秒前
自由青柏发布了新的文献求助10
31秒前
andy发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150257
求助须知:如何正确求助?哪些是违规求助? 2801405
关于积分的说明 7844390
捐赠科研通 2458892
什么是DOI,文献DOI怎么找? 1308773
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721