肠道菌群
疾病
计算机科学
计算生物学
人工智能
模式识别(心理学)
生物
医学
内科学
免疫学
作者
Zhi-An Huang,Pengwei Hu,Lun Hu,Zhu-Hong You,Kay Chen Tan,Yu‐An Huang
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3453967
摘要
Advancements in high-throughput technologies have yielded large-scale human gut microbiota profiles, sparking considerable interest in exploring the relationship between the gut microbiome and complex human diseases. Through extracting and integrating knowledge from complex microbiome data, existing machine learning (ML)-based studies have demonstrated their effectiveness in the precise identification of high-risk individuals. However, these approaches struggle to address the heterogeneity and sparsity of microbial features and explore the intrinsic relatedness among human diseases. In this work, we reframe human gut microbiome-based disease detection as a multilabel classification (MLC) problem and integrate a range of innovative techniques within the proposed MLC framework, aptly named GutMLC. Specifically, the entity semantic similarity as priori knowledge is incorporated into multilabel feature selection and loss functions by capturing the shared attributes and inherent associations among diseases and microbes. To tackle the issue of label imbalance, both within and between labels, we adapt the focal loss (FL) function for MLC using debiased inverse weighting. Extensive experiment results consistently demonstrate the competitive performance of GutMLC in comparison with commonly used MLC and single-label classification (SLC) algorithms. This work seeks to unlock the potential of gut microbiota as robust biomarkers for multiple disease prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI