Compressive strength prediction and low-carbon optimization of fly ash geopolymer concrete based on big data and ensemble learning

抗压强度 粉煤灰 硅酸盐水泥 地聚合物水泥 遗传程序设计 温室气体 聚合物 固化(化学) 均方误差 计算机科学 环境科学 水泥 材料科学 数学 机器学习 统计 复合材料 生态学 生物
作者
Peiling Jiang,Diansheng Zhao,Cheng Jin,Shan Ye,Chenchen Luan,Rana Faisal Tufail
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (9): e0310422-e0310422 被引量:1
标识
DOI:10.1371/journal.pone.0310422
摘要

Portland cement concrete (PCC) is a major contributor to human-made CO 2 emissions. To address this environmental impact, fly ash geopolymer concrete (FAGC) has emerged as a promising low-carbon alternative. This study establishes a robust compressive strength prediction model for FAGC and develops an optimal mixture design method to achieve target compressive strength with minimal CO 2 emissions. To develop robust prediction models, comprehensive factors, including fly ash characteristics, mixture proportions, curing parameters, and specimen types, are considered, a large dataset comprising 1136 observations is created, and polynomial regression, genetic programming, and ensemble learning are employed. The ensemble learning model shows superior accuracy and generalization ability with an RMSE value of 1.81 MPa and an R 2 value of 0.93 in the experimental validation set. Then, the study integrates the developed strength model with a life cycle assessment-based CO 2 emissions model, formulating an optimal FAGC mixture design program. A case study validates the effectiveness of this program, demonstrating a 16.7% reduction in CO 2 emissions for FAGC with a compressive strength of 50 MPa compared to traditional trial-and-error design. Moreover, compared to PCC, the developed FAGC achieves a substantial 60.3% reduction in CO 2 emissions. This work provides engineers with tools for compressive strength prediction and low carbon optimization of FAGC, enabling rapid and highly accurate design of concrete with lower CO 2 emissions and greater sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子然发布了新的文献求助10
刚刚
miaomiao完成签到,获得积分10
刚刚
LNan完成签到,获得积分10
1秒前
wanci应助123采纳,获得10
2秒前
36038138完成签到 ,获得积分10
3秒前
所所应助温心采纳,获得10
5秒前
houbinghua发布了新的文献求助10
6秒前
失眠双双完成签到,获得积分10
6秒前
孤独丹秋完成签到,获得积分10
6秒前
36456657应助TAD采纳,获得10
6秒前
Sakura完成签到,获得积分10
10秒前
BareBear应助Liu采纳,获得10
11秒前
迪奥哒应助shawn采纳,获得10
11秒前
13秒前
15秒前
SWD完成签到,获得积分10
15秒前
Sakura发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
精明芷巧完成签到 ,获得积分10
18秒前
19秒前
小滨发布了新的文献求助10
20秒前
20秒前
BareBear应助Liu采纳,获得10
20秒前
汉堡包应助PXP采纳,获得10
21秒前
Murphy发布了新的文献求助10
22秒前
23秒前
_呱_应助NanNan626采纳,获得50
23秒前
zyz953398531发布了新的文献求助10
23秒前
23秒前
体贴花卷发布了新的文献求助30
24秒前
顾矜应助rgaerva采纳,获得10
24秒前
25秒前
专注雨珍完成签到,获得积分10
26秒前
呐殇发布了新的文献求助10
26秒前
海绵徐完成签到,获得积分10
27秒前
早岁完成签到,获得积分10
28秒前
小亿发布了新的文献求助10
29秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312299
求助须知:如何正确求助?哪些是违规求助? 2944955
关于积分的说明 8522182
捐赠科研通 2620750
什么是DOI,文献DOI怎么找? 1433015
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650153