A novel hybrid network model for image steganalysis

隐写分析技术 计算机科学 人工智能 卷积神经网络 隐写术 模式识别(心理学) 特征提取 特征(语言学) 图像(数学) 深度学习 人工神经网络 机器学习 数据挖掘 语言学 哲学
作者
Suqing Yang,Xingxing Jia,F.C. Zou,Yangshijie Zhang,Chengsheng Yuan
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier]
卷期号:103: 104251-104251
标识
DOI:10.1016/j.jvcir.2024.104251
摘要

Steganalysis attempts to discover hidden signals in suspected carriers or at the least detect which media contain hidden signals. Conventional approaches to steganalysis depend on artificially designed image features. However, these methods are time-consuming and labor-intensive. Additionally, the statistical methods may not produce optimal outcomes. Deep learning-based steganalysis algorithms which use convolutional neural network (CNN) structures, such as ZhuNet, obviate the need for artificially design features while optimizing the feature extraction and classification processes via training and learning. This approach greatly boosts the applicability and effectiveness of steganalysis. Nevertheless, it is important to note that CNN-based steganalysis algorithms do have some limitations. To begin with, the feature extraction of stego images, which relies on deep neural networks, lacks consideration for the interdependence of local features when constructing the overall feature map. Furthermore, CNN-based steganalysis models use all features indiscriminately to classify stego images, which can potentially reduce the models' accuracy. Based on ZhuNet, we provide a novel hybrid network model known as ZhuNet-ATT-BiLSTM in order to tackle the aforementioned concerns. This model introduces a Bidirectional Long Short-Term Memory (BiLSTM) structure to mutually learn about the relationships between image features to ensure comprehensive utilization of stego image features. In addition, an attention mechanism is integrated for steganalysis to dynamically allocate weights to feature data, amplifying the signal for the vital features while effectively attenuating the less important and irrelevant features. Lastly, the enhanced model is verified with two open datasets: Bossbase 1.01 and COCO. According to experimental findings, the proposed hybrid network model improves the image steganalysis accuracy by comparing with earlier methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的西红柿完成签到,获得积分10
1秒前
3秒前
sophiechen027完成签到,获得积分10
3秒前
3秒前
bkagyin应助忧心的白开水采纳,获得10
6秒前
6秒前
sophiechen027发布了新的文献求助20
6秒前
lobule完成签到,获得积分10
8秒前
Chief完成签到,获得积分0
10秒前
量子星尘发布了新的文献求助10
10秒前
weiwei发布了新的文献求助10
10秒前
qh完成签到,获得积分10
10秒前
lobule发布了新的文献求助10
12秒前
orixero应助高天采纳,获得10
12秒前
13秒前
dreamvssnow完成签到 ,获得积分10
15秒前
研友_VZG7GZ应助谦让又琴采纳,获得10
16秒前
星期三的摸鱼怪完成签到 ,获得积分10
16秒前
17秒前
20秒前
20秒前
22秒前
22秒前
weiwei完成签到,获得积分10
24秒前
yznfly应助sophiechen027采纳,获得20
25秒前
耿耿发布了新的文献求助10
26秒前
29秒前
Amelk发布了新的文献求助10
29秒前
摩天轮完成签到 ,获得积分10
29秒前
29秒前
binshier完成签到,获得积分10
31秒前
Djdidn发布了新的文献求助10
31秒前
32秒前
33秒前
光源处发布了新的文献求助10
34秒前
34秒前
TARS发布了新的文献求助10
37秒前
38秒前
一一发布了新的文献求助10
39秒前
慕青应助光源处采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602044
求助须知:如何正确求助?哪些是违规求助? 4687349
关于积分的说明 14848625
捐赠科研通 4682785
什么是DOI,文献DOI怎么找? 2539689
邀请新用户注册赠送积分活动 1506443
关于科研通互助平台的介绍 1471366