A novel hybrid network model for image steganalysis

隐写分析技术 计算机科学 人工智能 卷积神经网络 隐写术 模式识别(心理学) 特征提取 特征(语言学) 图像(数学) 深度学习 人工神经网络 机器学习 数据挖掘 语言学 哲学
作者
Suqing Yang,Xingxing Jia,F.C. Zou,Yangshijie Zhang,Chengsheng Yuan
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier BV]
卷期号:103: 104251-104251
标识
DOI:10.1016/j.jvcir.2024.104251
摘要

Steganalysis attempts to discover hidden signals in suspected carriers or at the least detect which media contain hidden signals. Conventional approaches to steganalysis depend on artificially designed image features. However, these methods are time-consuming and labor-intensive. Additionally, the statistical methods may not produce optimal outcomes. Deep learning-based steganalysis algorithms which use convolutional neural network (CNN) structures, such as ZhuNet, obviate the need for artificially design features while optimizing the feature extraction and classification processes via training and learning. This approach greatly boosts the applicability and effectiveness of steganalysis. Nevertheless, it is important to note that CNN-based steganalysis algorithms do have some limitations. To begin with, the feature extraction of stego images, which relies on deep neural networks, lacks consideration for the interdependence of local features when constructing the overall feature map. Furthermore, CNN-based steganalysis models use all features indiscriminately to classify stego images, which can potentially reduce the models' accuracy. Based on ZhuNet, we provide a novel hybrid network model known as ZhuNet-ATT-BiLSTM in order to tackle the aforementioned concerns. This model introduces a Bidirectional Long Short-Term Memory (BiLSTM) structure to mutually learn about the relationships between image features to ensure comprehensive utilization of stego image features. In addition, an attention mechanism is integrated for steganalysis to dynamically allocate weights to feature data, amplifying the signal for the vital features while effectively attenuating the less important and irrelevant features. Lastly, the enhanced model is verified with two open datasets: Bossbase 1.01 and COCO. According to experimental findings, the proposed hybrid network model improves the image steganalysis accuracy by comparing with earlier methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路的问丝完成签到,获得积分20
刚刚
1秒前
Lucas应助一叶扁舟采纳,获得10
1秒前
2秒前
科目三应助cyanpomelo采纳,获得10
4秒前
4秒前
deeferf发布了新的文献求助10
5秒前
5秒前
小魔王发布了新的文献求助10
6秒前
8秒前
zhouyu发布了新的文献求助10
8秒前
8秒前
云是完成签到 ,获得积分10
9秒前
李y梅子完成签到 ,获得积分10
10秒前
ran发布了新的文献求助10
10秒前
ChatGPT发布了新的文献求助10
13秒前
成泰乐发布了新的文献求助10
14秒前
少少少完成签到,获得积分10
14秒前
李宫俊发布了新的文献求助10
14秒前
斑马不一般应助吱呜采纳,获得10
15秒前
15秒前
15秒前
王则华关注了科研通微信公众号
16秒前
ran完成签到,获得积分10
17秒前
Fengyun完成签到,获得积分10
17秒前
10完成签到,获得积分10
18秒前
19秒前
20秒前
sunny完成签到 ,获得积分10
21秒前
852应助圆圆采纳,获得10
21秒前
22秒前
sta发布了新的文献求助30
24秒前
25秒前
26秒前
AR驳回了CodeCraft应助
27秒前
充电宝应助vivianzhang采纳,获得10
28秒前
卢珈馨发布了新的文献求助10
28秒前
班钰发布了新的文献求助10
28秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941061
求助须知:如何正确求助?哪些是违规求助? 4207141
关于积分的说明 13076618
捐赠科研通 3985902
什么是DOI,文献DOI怎么找? 2182363
邀请新用户注册赠送积分活动 1197920
关于科研通互助平台的介绍 1110256