A novel hybrid network model for image steganalysis

隐写分析技术 计算机科学 人工智能 卷积神经网络 隐写术 模式识别(心理学) 特征提取 特征(语言学) 图像(数学) 深度学习 人工神经网络 机器学习 数据挖掘 语言学 哲学
作者
Suqing Yang,Xingxing Jia,F.C. Zou,Yangshijie Zhang,Chengsheng Yuan
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier]
卷期号:103: 104251-104251
标识
DOI:10.1016/j.jvcir.2024.104251
摘要

Steganalysis attempts to discover hidden signals in suspected carriers or at the least detect which media contain hidden signals. Conventional approaches to steganalysis depend on artificially designed image features. However, these methods are time-consuming and labor-intensive. Additionally, the statistical methods may not produce optimal outcomes. Deep learning-based steganalysis algorithms which use convolutional neural network (CNN) structures, such as ZhuNet, obviate the need for artificially design features while optimizing the feature extraction and classification processes via training and learning. This approach greatly boosts the applicability and effectiveness of steganalysis. Nevertheless, it is important to note that CNN-based steganalysis algorithms do have some limitations. To begin with, the feature extraction of stego images, which relies on deep neural networks, lacks consideration for the interdependence of local features when constructing the overall feature map. Furthermore, CNN-based steganalysis models use all features indiscriminately to classify stego images, which can potentially reduce the models' accuracy. Based on ZhuNet, we provide a novel hybrid network model known as ZhuNet-ATT-BiLSTM in order to tackle the aforementioned concerns. This model introduces a Bidirectional Long Short-Term Memory (BiLSTM) structure to mutually learn about the relationships between image features to ensure comprehensive utilization of stego image features. In addition, an attention mechanism is integrated for steganalysis to dynamically allocate weights to feature data, amplifying the signal for the vital features while effectively attenuating the less important and irrelevant features. Lastly, the enhanced model is verified with two open datasets: Bossbase 1.01 and COCO. According to experimental findings, the proposed hybrid network model improves the image steganalysis accuracy by comparing with earlier methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZDZ关闭了ZDZ文献求助
1秒前
赵立宁发布了新的文献求助10
1秒前
伶俐冰之发布了新的文献求助10
2秒前
6秒前
赵立宁完成签到,获得积分10
7秒前
我爱学习发布了新的文献求助100
7秒前
北风北风完成签到 ,获得积分10
7秒前
任性的跳跳糖完成签到,获得积分20
7秒前
8秒前
威武的大树完成签到,获得积分10
8秒前
NexusExplorer应助沉静的曼荷采纳,获得10
9秒前
9秒前
milk发布了新的文献求助10
10秒前
南风南下发布了新的文献求助30
10秒前
RED发布了新的文献求助10
11秒前
庄建煌发布了新的文献求助10
12秒前
12秒前
阿肖呀发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
bkagyin应助学术底层fw采纳,获得10
15秒前
BowieHuang应助细腻翠霜采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
蓝柚应助科研通管家采纳,获得10
15秒前
香蕉诗蕊应助科研通管家采纳,获得10
15秒前
16秒前
英俊的铭应助科研通管家采纳,获得20
16秒前
大模型应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
16秒前
受伤冰菱完成签到,获得积分10
17秒前
思源应助nn采纳,获得10
18秒前
18秒前
xin发布了新的文献求助10
19秒前
20秒前
20秒前
白洛寒发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578711
求助须知:如何正确求助?哪些是违规求助? 4663506
关于积分的说明 14746896
捐赠科研通 4604465
什么是DOI,文献DOI怎么找? 2526940
邀请新用户注册赠送积分活动 1496536
关于科研通互助平台的介绍 1465830