A novel hybrid network model for image steganalysis

隐写分析技术 计算机科学 人工智能 卷积神经网络 隐写术 模式识别(心理学) 特征提取 特征(语言学) 图像(数学) 深度学习 人工神经网络 机器学习 数据挖掘 语言学 哲学
作者
Suqing Yang,Xingxing Jia,F.C. Zou,Yangshijie Zhang,Chengsheng Yuan
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier]
卷期号:103: 104251-104251
标识
DOI:10.1016/j.jvcir.2024.104251
摘要

Steganalysis attempts to discover hidden signals in suspected carriers or at the least detect which media contain hidden signals. Conventional approaches to steganalysis depend on artificially designed image features. However, these methods are time-consuming and labor-intensive. Additionally, the statistical methods may not produce optimal outcomes. Deep learning-based steganalysis algorithms which use convolutional neural network (CNN) structures, such as ZhuNet, obviate the need for artificially design features while optimizing the feature extraction and classification processes via training and learning. This approach greatly boosts the applicability and effectiveness of steganalysis. Nevertheless, it is important to note that CNN-based steganalysis algorithms do have some limitations. To begin with, the feature extraction of stego images, which relies on deep neural networks, lacks consideration for the interdependence of local features when constructing the overall feature map. Furthermore, CNN-based steganalysis models use all features indiscriminately to classify stego images, which can potentially reduce the models' accuracy. Based on ZhuNet, we provide a novel hybrid network model known as ZhuNet-ATT-BiLSTM in order to tackle the aforementioned concerns. This model introduces a Bidirectional Long Short-Term Memory (BiLSTM) structure to mutually learn about the relationships between image features to ensure comprehensive utilization of stego image features. In addition, an attention mechanism is integrated for steganalysis to dynamically allocate weights to feature data, amplifying the signal for the vital features while effectively attenuating the less important and irrelevant features. Lastly, the enhanced model is verified with two open datasets: Bossbase 1.01 and COCO. According to experimental findings, the proposed hybrid network model improves the image steganalysis accuracy by comparing with earlier methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AireenBeryl531完成签到,获得积分0
2秒前
科研小白完成签到 ,获得积分10
8秒前
ttt完成签到,获得积分10
9秒前
爱吃萝卜的Bob完成签到,获得积分10
11秒前
giao完成签到,获得积分10
14秒前
abc完成签到 ,获得积分10
19秒前
ffyzsl完成签到,获得积分10
21秒前
小李叭叭完成签到,获得积分10
29秒前
CHyaa完成签到,获得积分10
31秒前
拉塞尔....完成签到 ,获得积分10
32秒前
strive完成签到 ,获得积分10
34秒前
幽若宝宝完成签到,获得积分10
34秒前
大萱完成签到 ,获得积分10
35秒前
夷陵老祖胃无限完成签到,获得积分10
39秒前
飞竹天寻完成签到,获得积分20
39秒前
阿咚完成签到,获得积分10
41秒前
seedcui完成签到,获得积分10
42秒前
不吃辣活不了完成签到 ,获得积分10
43秒前
嗯哼完成签到,获得积分10
48秒前
49秒前
Liar应助科研通管家采纳,获得10
49秒前
传奇3应助科研通管家采纳,获得10
49秒前
彭于晏应助科研通管家采纳,获得10
49秒前
Clover04应助科研通管家采纳,获得10
49秒前
49秒前
FashionBoy应助科研通管家采纳,获得10
49秒前
Liar应助科研通管家采纳,获得10
49秒前
bkagyin应助科研通管家采纳,获得10
49秒前
大模型应助科研通管家采纳,获得20
49秒前
49秒前
传奇3应助科研通管家采纳,获得10
49秒前
50秒前
嗯哼发布了新的文献求助10
53秒前
bkagyin应助我爱科研研研研采纳,获得10
54秒前
111完成签到,获得积分10
54秒前
和谐的映梦完成签到,获得积分10
56秒前
Tao完成签到 ,获得积分10
57秒前
1分钟前
炙热的河马应助嗯哼采纳,获得10
1分钟前
minino完成签到 ,获得积分10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795870
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176