亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel hybrid network model for image steganalysis

隐写分析技术 计算机科学 人工智能 卷积神经网络 隐写术 模式识别(心理学) 特征提取 特征(语言学) 图像(数学) 深度学习 人工神经网络 机器学习 数据挖掘 语言学 哲学
作者
Suqing Yang,Xingxing Jia,F.C. Zou,Yangshijie Zhang,Chengsheng Yuan
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier BV]
卷期号:103: 104251-104251
标识
DOI:10.1016/j.jvcir.2024.104251
摘要

Steganalysis attempts to discover hidden signals in suspected carriers or at the least detect which media contain hidden signals. Conventional approaches to steganalysis depend on artificially designed image features. However, these methods are time-consuming and labor-intensive. Additionally, the statistical methods may not produce optimal outcomes. Deep learning-based steganalysis algorithms which use convolutional neural network (CNN) structures, such as ZhuNet, obviate the need for artificially design features while optimizing the feature extraction and classification processes via training and learning. This approach greatly boosts the applicability and effectiveness of steganalysis. Nevertheless, it is important to note that CNN-based steganalysis algorithms do have some limitations. To begin with, the feature extraction of stego images, which relies on deep neural networks, lacks consideration for the interdependence of local features when constructing the overall feature map. Furthermore, CNN-based steganalysis models use all features indiscriminately to classify stego images, which can potentially reduce the models' accuracy. Based on ZhuNet, we provide a novel hybrid network model known as ZhuNet-ATT-BiLSTM in order to tackle the aforementioned concerns. This model introduces a Bidirectional Long Short-Term Memory (BiLSTM) structure to mutually learn about the relationships between image features to ensure comprehensive utilization of stego image features. In addition, an attention mechanism is integrated for steganalysis to dynamically allocate weights to feature data, amplifying the signal for the vital features while effectively attenuating the less important and irrelevant features. Lastly, the enhanced model is verified with two open datasets: Bossbase 1.01 and COCO. According to experimental findings, the proposed hybrid network model improves the image steganalysis accuracy by comparing with earlier methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助宝贝采纳,获得10
41秒前
zsmj23完成签到 ,获得积分0
48秒前
53秒前
宝贝发布了新的文献求助10
58秒前
CodeCraft应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
yyds举报xdd求助涉嫌违规
1分钟前
sofardli发布了新的文献求助10
1分钟前
sofardli完成签到,获得积分10
1分钟前
1分钟前
蒙豆儿发布了新的文献求助10
2分钟前
2分钟前
孙孙发布了新的文献求助10
2分钟前
2分钟前
yyw发布了新的文献求助10
2分钟前
zhao完成签到,获得积分10
2分钟前
黑大侠完成签到 ,获得积分0
3分钟前
深度精分患者完成签到,获得积分10
3分钟前
3分钟前
yyw完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
Virtual应助科研通管家采纳,获得20
5分钟前
5分钟前
5分钟前
荔枝发布了新的文献求助10
5分钟前
ao20000106应助孙孙采纳,获得10
6分钟前
6分钟前
manfullmoon完成签到,获得积分0
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
精明的凡波完成签到,获得积分10
8分钟前
Otter完成签到,获得积分0
8分钟前
8分钟前
Virtual应助科研通管家采纳,获得20
9分钟前
jindui完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582049
求助须知:如何正确求助?哪些是违规求助? 3999923
关于积分的说明 12381907
捐赠科研通 3674780
什么是DOI,文献DOI怎么找? 2025390
邀请新用户注册赠送积分活动 1059160
科研通“疑难数据库(出版商)”最低求助积分说明 945765