Accurate assembly of circular RNAs with TERRACE

生物 环状RNA 计算生物学 RNA剪接 剪接 计算机科学 核糖核酸 图形 梯田(农业) 转录组 算法 基因 遗传学 理论计算机科学 基因表达 历史 考古
作者
Tasfia Zahin,Qian Shi,Xiaonan Zang,Mingfu Shao
出处
期刊:Genome Research [Cold Spring Harbor Laboratory]
卷期号:: gr.279106.124-gr.279106.124
标识
DOI:10.1101/gr.279106.124
摘要

Circular RNA (circRNA) is a class of RNA molecules that forms a closed loop with its 5' and 3' ends covalently bonded. circRNAs are known to be more stable than linear RNAs, admit distinct properties and functions, and have been proven to be promising biomarkers. Existing methods for assembling circRNAs heavily rely on the annotated transcriptomes, hence exhibiting unsatisfactory accuracy without a high-quality transcriptome. We present TERRACE, a new algorithm for full-length assembly of circRNAs from paired-end total RNA-seq data. TERRACE uses the splice graph as the underlying data structure that organizes the splicing and coverage information. We transform the problem of assembling circRNAs into finding paths that "bridge" the three fragments in the splice graph induced by back-spliced reads. We adopt a definition for optimal bridging paths and a dynamic programming algorithm to calculate such optimal paths. TERRACE features an efficient algorithm to detect back-spliced reads missed by RNA-seq aligners, contributing to its much improved sensitivity. It also incorporates a new machine-learning approach trained to assign a confidence score to each assembled circRNA, which is shown superior to using abundance for scoring. On both simulations and biological datasets TERRACE consistently outperforms existing methods by a large margin in sensitivity while maintaining better or comparable precision. In particular, when the annotations are not provided, TERRACE assembles 123%-413% more correct circRNAs than state-of-the-art methods. TERRACE presents a major leap on assembling full-length circRNAs from RNA-seq data, and we expect it to be widely used in the downstream research on circRNAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu完成签到 ,获得积分10
1秒前
小阿同学发布了新的文献求助10
1秒前
糟糕的尔云完成签到,获得积分10
4秒前
YUNA完成签到 ,获得积分10
5秒前
帅气灯泡发布了新的文献求助10
5秒前
YAgT发布了新的文献求助10
5秒前
6秒前
7秒前
可爱的函函应助白三采纳,获得10
7秒前
7秒前
7秒前
传统的丹雪完成签到 ,获得积分10
9秒前
我是老大应助江睿曦采纳,获得10
9秒前
Seanfly发布了新的文献求助10
11秒前
Finen发布了新的文献求助10
11秒前
曹毅凯完成签到,获得积分10
11秒前
lcr发布了新的文献求助15
12秒前
13秒前
帅气灯泡完成签到,获得积分10
13秒前
15秒前
FashionBoy应助HesperLxy采纳,获得10
19秒前
longyuyan完成签到,获得积分10
19秒前
20秒前
斯文败类应助落后凝莲采纳,获得10
21秒前
快乐的寄容完成签到 ,获得积分10
23秒前
夏侯夏侯发布了新的文献求助10
25秒前
小二郎应助舒服的嚓茶采纳,获得10
26秒前
SHANSHAN完成签到 ,获得积分10
27秒前
28秒前
脑洞疼应助聪明的千青采纳,获得10
29秒前
共享精神应助盘子采纳,获得10
29秒前
30秒前
Finen完成签到,获得积分10
30秒前
HesperLxy发布了新的文献求助10
31秒前
31秒前
linkage完成签到,获得积分20
31秒前
31秒前
likever22026应助AWESOME Ling采纳,获得10
32秒前
洋了个洋发布了新的文献求助10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874771
求助须知:如何正确求助?哪些是违规求助? 6510312
关于积分的说明 15675067
捐赠科研通 4992331
什么是DOI,文献DOI怎么找? 2691088
邀请新用户注册赠送积分活动 1633512
关于科研通互助平台的介绍 1591166