清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TC-DTA: Predicting Drug-Target Binding Affinity With Transformer and Convolutional Neural Networks

卷积神经网络 计算机科学 药品 人工神经网络 变压器 人工智能 模式识别(心理学) 生物系统 材料科学 物理 药理学 医学 电压 生物 量子力学
作者
Xiwei Tang,Yiqiang Zhou,Mengyun Yang,Wenjun Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 572-578 被引量:12
标识
DOI:10.1109/tnb.2024.3441590
摘要

Bioinformatics is a rapidly evolving field that applies computational methods to analyze and interpret biological data. A key task in bioinformatics is identifying novel drug-target interactions (DTIs), which plays a crucial role in drug discovery. Most computational approaches treat DTI prediction as a binary classification problem, determining whether drug-target pairs interact. However, with the growing availability of drug-target binding affinity data, this binary task can be reframed as a regression problem focused on drug-target affinity (DTA). DTA quantifies the strength of drug-target binding, offering more detailed insights than DTI and serving as a valuable tool for virtual screening in drug discovery. Accurately predicting compound interactions with targets can accelerate the drug development process. In this study, we introduce a deep learning model named TC-DTA for DTA prediction, leveraging convolutional neural networks (CNN) and the encoder module of the transformer architecture. We begin by extracting raw drug SMILES strings and protein amino acid sequences from the dataset, which are then represented using various encoding methods. Subsequently, we employ CNN and the transformer's encoder module to extract features from the drug SMILES strings and protein sequences, respectively. Finally, the feature information is concatenated and input into a multi-layer perceptron to predict binding affinity scores. We evaluated our model on two benchmark DTA datasets, Davis and KIBA, comparing it with methods such as KronRLS, SimBoost, and DeepDTA. Our model, TC-DTA, outperformed these baseline methods based on evaluation metrics like Mean Squared Error (MSE), Concordance Index (CI), and Regression towards the Mean Index ( rm2 ). These results highlight the effectiveness of the Transformer's encoder and CNN in extracting meaningful representations from sequences, thereby enhancing DTA prediction accuracy. This deep learning model can accelerate drug discovery by identifying drug candidates with high binding affinity to specific targets. Compared to traditional methods, machine learning technology offers a more effective and efficient approach to drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唠叨的凌雪完成签到,获得积分10
1秒前
gmc完成签到 ,获得积分10
4秒前
丰富的瑾瑜完成签到,获得积分20
10秒前
10秒前
43秒前
酷波er应助科研通管家采纳,获得10
47秒前
顾矜应助科研通管家采纳,获得10
47秒前
50秒前
58秒前
WEN发布了新的文献求助10
1分钟前
年轻千愁完成签到 ,获得积分10
1分钟前
万能图书馆应助WEN采纳,获得20
1分钟前
踏实的心情完成签到,获得积分10
1分钟前
cgs完成签到 ,获得积分10
1分钟前
guoxihan完成签到,获得积分10
1分钟前
2分钟前
六一儿童节完成签到 ,获得积分0
2分钟前
aspirin完成签到 ,获得积分10
2分钟前
zhangsan完成签到,获得积分10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
爆米花应助Developing_human采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
wyx完成签到,获得积分10
3分钟前
涛1完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
可爱的芷云完成签到,获得积分10
4分钟前
jsinm-thyroid完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
婉莹完成签到 ,获得积分0
4分钟前
pinging完成签到,获得积分10
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
whitepiece完成签到,获得积分10
4分钟前
xun完成签到,获得积分20
5分钟前
孙晓燕完成签到 ,获得积分10
5分钟前
5分钟前
WEN完成签到,获得积分10
5分钟前
阿里发布了新的文献求助10
5分钟前
WEN发布了新的文献求助20
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664597
求助须知:如何正确求助?哪些是违规求助? 4866023
关于积分的说明 15108142
捐赠科研通 4823230
什么是DOI,文献DOI怎么找? 2582126
邀请新用户注册赠送积分活动 1536199
关于科研通互助平台的介绍 1494570