TC-DTA: Predicting Drug-Target Binding Affinity With Transformer and Convolutional Neural Networks

卷积神经网络 计算机科学 药品 人工神经网络 变压器 人工智能 模式识别(心理学) 生物系统 材料科学 物理 药理学 医学 电压 生物 量子力学
作者
Xiwei Tang,Yiqiang Zhou,Mengyun Yang,Wenjun Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 572-578 被引量:12
标识
DOI:10.1109/tnb.2024.3441590
摘要

Bioinformatics is a rapidly evolving field that applies computational methods to analyze and interpret biological data. A key task in bioinformatics is identifying novel drug-target interactions (DTIs), which plays a crucial role in drug discovery. Most computational approaches treat DTI prediction as a binary classification problem, determining whether drug-target pairs interact. However, with the growing availability of drug-target binding affinity data, this binary task can be reframed as a regression problem focused on drug-target affinity (DTA). DTA quantifies the strength of drug-target binding, offering more detailed insights than DTI and serving as a valuable tool for virtual screening in drug discovery. Accurately predicting compound interactions with targets can accelerate the drug development process. In this study, we introduce a deep learning model named TC-DTA for DTA prediction, leveraging convolutional neural networks (CNN) and the encoder module of the transformer architecture. We begin by extracting raw drug SMILES strings and protein amino acid sequences from the dataset, which are then represented using various encoding methods. Subsequently, we employ CNN and the transformer's encoder module to extract features from the drug SMILES strings and protein sequences, respectively. Finally, the feature information is concatenated and input into a multi-layer perceptron to predict binding affinity scores. We evaluated our model on two benchmark DTA datasets, Davis and KIBA, comparing it with methods such as KronRLS, SimBoost, and DeepDTA. Our model, TC-DTA, outperformed these baseline methods based on evaluation metrics like Mean Squared Error (MSE), Concordance Index (CI), and Regression towards the Mean Index ( rm2 ). These results highlight the effectiveness of the Transformer's encoder and CNN in extracting meaningful representations from sequences, thereby enhancing DTA prediction accuracy. This deep learning model can accelerate drug discovery by identifying drug candidates with high binding affinity to specific targets. Compared to traditional methods, machine learning technology offers a more effective and efficient approach to drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助qqqq采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
吕凯迪发布了新的文献求助10
2秒前
tt发布了新的文献求助10
2秒前
慕青应助顺顺安采纳,获得30
3秒前
的方法完成签到,获得积分10
3秒前
3秒前
111完成签到 ,获得积分10
3秒前
打死不穿秋裤完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
kiko完成签到,获得积分10
5秒前
Criminology34应助mookie采纳,获得10
6秒前
Criminology34应助mookie采纳,获得10
6秒前
597完成签到,获得积分10
6秒前
Criminology34应助mookie采纳,获得10
6秒前
vily完成签到,获得积分10
8秒前
9秒前
丘比特应助刻苦惜萍采纳,获得10
9秒前
9秒前
唧唧咕咕完成签到,获得积分10
10秒前
cnspower发布了新的文献求助20
10秒前
ableyy完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
小杜小杜发布了新的文献求助10
13秒前
晨枫完成签到,获得积分10
13秒前
鲍复天完成签到,获得积分10
14秒前
14秒前
烟花应助11采纳,获得10
15秒前
单薄曲奇完成签到 ,获得积分10
15秒前
15秒前
Dean051204发布了新的文献求助10
16秒前
zxr发布了新的文献求助10
16秒前
爆米花应助Done采纳,获得10
16秒前
烟花应助明天见采纳,获得10
16秒前
archieeee发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750082
求助须知:如何正确求助?哪些是违规求助? 5462045
关于积分的说明 15365483
捐赠科研通 4889284
什么是DOI,文献DOI怎么找? 2629034
邀请新用户注册赠送积分活动 1577326
关于科研通互助平台的介绍 1533933