TC-DTA: predicting drug–target binding affinity with transformer and convolutional neural networks

卷积神经网络 计算机科学 药品 人工神经网络 变压器 人工智能 模式识别(心理学) 生物系统 材料科学 物理 药理学 医学 电压 生物 量子力学
作者
Xiwei Tang,Yiqiang Zhou,Mengyun Yang,Wenjun Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 572-578 被引量:3
标识
DOI:10.1109/tnb.2024.3441590
摘要

Bioinformatics is a rapidly evolving field that applies computational methods to analyze and interpret biological data. A key task in bioinformatics is identifying novel drug-target interactions (DTIs), which plays a crucial role in drug discovery. Most computational approaches treat DTI prediction as a binary classification problem, determining whether drug-target pairs interact. However, with the growing availability of drug-target binding affinity data, this binary task can be reframed as a regression problem focused on drug-target affinity (DTA). DTA quantifies the strength of drug-target binding, offering more detailed insights than DTI and serving as a valuable tool for virtual screening in drug discovery. Accurately predicting compound interactions with targets can accelerate the drug development process. In this study, we introduce a deep learning model named TC-DTA for DTA prediction, leveraging convolutional neural networks (CNN) and the encoder module of the transformer architecture. We begin by extracting raw drug SMILES strings and protein amino acid sequences from the dataset, which are then represented using various encoding methods. Subsequently, we employ CNN and the transformer's encoder module to extract features from the drug SMILES strings and protein sequences, respectively. Finally, the feature information is concatenated and input into a multi-layer perceptron to predict binding affinity scores. We evaluated our model on two benchmark DTA datasets, Davis and KIBA, comparing it with methods such as KronRLS, SimBoost, and DeepDTA. Our model, TC-DTA, outperformed these baseline methods based on evaluation metrics like Mean Squared Error (MSE), Concordance Index (CI), and Regression towards the Mean Index ( r
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lele完成签到,获得积分10
1秒前
2秒前
4秒前
每天看一篇论文完成签到,获得积分10
5秒前
太阳花发布了新的文献求助10
6秒前
NSGB完成签到 ,获得积分10
10秒前
睡不完的觉完成签到,获得积分10
11秒前
舒心的孤风完成签到,获得积分10
12秒前
12秒前
所所应助思维隋采纳,获得10
13秒前
勤劳的小蜜蜂完成签到,获得积分10
15秒前
Lucas应助幸福大白采纳,获得10
15秒前
23533213完成签到 ,获得积分20
15秒前
maxthon完成签到,获得积分10
15秒前
NatalyaF发布了新的文献求助10
21秒前
科研通AI5应助霸气鹏飞采纳,获得10
21秒前
22秒前
SciGPT应助阿槿采纳,获得20
22秒前
22秒前
XSB完成签到,获得积分10
23秒前
三重积分咖啡完成签到 ,获得积分10
23秒前
酷波er应助哈哈哈采纳,获得10
24秒前
张杠杠完成签到 ,获得积分10
24秒前
27秒前
思维隋发布了新的文献求助10
29秒前
bmt关闭了bmt文献求助
30秒前
31秒前
32秒前
33秒前
34秒前
cora完成签到 ,获得积分20
36秒前
38秒前
哈哈哈发布了新的文献求助10
38秒前
40秒前
40秒前
Wang发布了新的文献求助10
42秒前
坦率的语芙完成签到,获得积分10
42秒前
汤泽琪发布了新的文献求助10
43秒前
六五完成签到,获得积分20
44秒前
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710