TC-DTA: Predicting Drug-Target Binding Affinity With Transformer and Convolutional Neural Networks

卷积神经网络 计算机科学 药品 人工神经网络 变压器 人工智能 模式识别(心理学) 生物系统 材料科学 物理 药理学 医学 电压 生物 量子力学
作者
Xiwei Tang,Yiqiang Zhou,Mengyun Yang,Wenjun Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 572-578 被引量:12
标识
DOI:10.1109/tnb.2024.3441590
摘要

Bioinformatics is a rapidly evolving field that applies computational methods to analyze and interpret biological data. A key task in bioinformatics is identifying novel drug-target interactions (DTIs), which plays a crucial role in drug discovery. Most computational approaches treat DTI prediction as a binary classification problem, determining whether drug-target pairs interact. However, with the growing availability of drug-target binding affinity data, this binary task can be reframed as a regression problem focused on drug-target affinity (DTA). DTA quantifies the strength of drug-target binding, offering more detailed insights than DTI and serving as a valuable tool for virtual screening in drug discovery. Accurately predicting compound interactions with targets can accelerate the drug development process. In this study, we introduce a deep learning model named TC-DTA for DTA prediction, leveraging convolutional neural networks (CNN) and the encoder module of the transformer architecture. We begin by extracting raw drug SMILES strings and protein amino acid sequences from the dataset, which are then represented using various encoding methods. Subsequently, we employ CNN and the transformer's encoder module to extract features from the drug SMILES strings and protein sequences, respectively. Finally, the feature information is concatenated and input into a multi-layer perceptron to predict binding affinity scores. We evaluated our model on two benchmark DTA datasets, Davis and KIBA, comparing it with methods such as KronRLS, SimBoost, and DeepDTA. Our model, TC-DTA, outperformed these baseline methods based on evaluation metrics like Mean Squared Error (MSE), Concordance Index (CI), and Regression towards the Mean Index ( rm2 ). These results highlight the effectiveness of the Transformer's encoder and CNN in extracting meaningful representations from sequences, thereby enhancing DTA prediction accuracy. This deep learning model can accelerate drug discovery by identifying drug candidates with high binding affinity to specific targets. Compared to traditional methods, machine learning technology offers a more effective and efficient approach to drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuhaorana111_完成签到,获得积分20
刚刚
W星球Y族人完成签到,获得积分10
刚刚
刚刚
脑洞疼应助ZR666888采纳,获得10
1秒前
日月归尘完成签到,获得积分10
1秒前
啵啵龙发布了新的文献求助10
4秒前
沉默棉花糖完成签到,获得积分10
5秒前
鹏程应助拼搏君浩采纳,获得10
6秒前
7秒前
老马哥完成签到 ,获得积分0
7秒前
明月念斯人完成签到 ,获得积分10
9秒前
9秒前
淡然冬灵应助锅铲采纳,获得20
10秒前
Rabbit完成签到 ,获得积分10
12秒前
12秒前
现代书雪发布了新的文献求助10
13秒前
宁霸完成签到,获得积分0
14秒前
deniroming完成签到,获得积分0
18秒前
Jasper应助ZR666888采纳,获得10
19秒前
一行完成签到,获得积分10
19秒前
壮观小懒虫完成签到 ,获得积分10
20秒前
勤恳洙应助现代书雪采纳,获得30
24秒前
30秒前
嘿嘿应助科研通管家采纳,获得10
30秒前
在水一方应助科研通管家采纳,获得10
30秒前
桐桐应助刘慧鑫采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
30秒前
充电宝应助科研通管家采纳,获得10
30秒前
斯文败类应助科研通管家采纳,获得10
30秒前
bkagyin应助科研通管家采纳,获得10
30秒前
31秒前
现代书雪完成签到,获得积分20
33秒前
34秒前
跳跃小伙完成签到 ,获得积分10
35秒前
35秒前
123345发布了新的文献求助10
36秒前
37秒前
zyyao发布了新的文献求助20
37秒前
流光发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346