清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TC-DTA: Predicting Drug-Target Binding Affinity With Transformer and Convolutional Neural Networks

卷积神经网络 计算机科学 药品 人工神经网络 变压器 人工智能 模式识别(心理学) 生物系统 材料科学 物理 药理学 医学 电压 生物 量子力学
作者
Xiwei Tang,Yiqiang Zhou,Mengyun Yang,Wenjun Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 572-578 被引量:12
标识
DOI:10.1109/tnb.2024.3441590
摘要

Bioinformatics is a rapidly evolving field that applies computational methods to analyze and interpret biological data. A key task in bioinformatics is identifying novel drug-target interactions (DTIs), which plays a crucial role in drug discovery. Most computational approaches treat DTI prediction as a binary classification problem, determining whether drug-target pairs interact. However, with the growing availability of drug-target binding affinity data, this binary task can be reframed as a regression problem focused on drug-target affinity (DTA). DTA quantifies the strength of drug-target binding, offering more detailed insights than DTI and serving as a valuable tool for virtual screening in drug discovery. Accurately predicting compound interactions with targets can accelerate the drug development process. In this study, we introduce a deep learning model named TC-DTA for DTA prediction, leveraging convolutional neural networks (CNN) and the encoder module of the transformer architecture. We begin by extracting raw drug SMILES strings and protein amino acid sequences from the dataset, which are then represented using various encoding methods. Subsequently, we employ CNN and the transformer's encoder module to extract features from the drug SMILES strings and protein sequences, respectively. Finally, the feature information is concatenated and input into a multi-layer perceptron to predict binding affinity scores. We evaluated our model on two benchmark DTA datasets, Davis and KIBA, comparing it with methods such as KronRLS, SimBoost, and DeepDTA. Our model, TC-DTA, outperformed these baseline methods based on evaluation metrics like Mean Squared Error (MSE), Concordance Index (CI), and Regression towards the Mean Index ( rm2 ). These results highlight the effectiveness of the Transformer's encoder and CNN in extracting meaningful representations from sequences, thereby enhancing DTA prediction accuracy. This deep learning model can accelerate drug discovery by identifying drug candidates with high binding affinity to specific targets. Compared to traditional methods, machine learning technology offers a more effective and efficient approach to drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangfaqing942完成签到 ,获得积分10
32秒前
BowieHuang应助科研通管家采纳,获得10
41秒前
1分钟前
1分钟前
RC发布了新的文献求助10
1分钟前
老石完成签到 ,获得积分10
1分钟前
方白秋完成签到,获得积分0
1分钟前
1分钟前
洗衣液谢完成签到 ,获得积分10
1分钟前
Yportne发布了新的文献求助10
1分钟前
Yportne完成签到,获得积分10
2分钟前
阳光的丹雪完成签到,获得积分10
2分钟前
哭泣灯泡完成签到,获得积分10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
邢契发布了新的文献求助10
3分钟前
3分钟前
爆米花应助RC采纳,获得10
3分钟前
4分钟前
矜持完成签到 ,获得积分10
4分钟前
4分钟前
大盆完成签到,获得积分10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
大盆发布了新的文献求助10
4分钟前
小马甲应助中原第一深情采纳,获得10
4分钟前
BowieHuang应助高兴的踏歌采纳,获得10
4分钟前
科研通AI6应助RC采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
LiShan完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
RC发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590577
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633677
什么是DOI,文献DOI怎么找? 2532838
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468733