清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TC-DTA: Predicting Drug-Target Binding Affinity With Transformer and Convolutional Neural Networks

卷积神经网络 计算机科学 药品 人工神经网络 变压器 人工智能 模式识别(心理学) 生物系统 材料科学 物理 药理学 医学 电压 生物 量子力学
作者
Xiwei Tang,Yiqiang Zhou,Mengyun Yang,Wenjun Li
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 572-578 被引量:12
标识
DOI:10.1109/tnb.2024.3441590
摘要

Bioinformatics is a rapidly evolving field that applies computational methods to analyze and interpret biological data. A key task in bioinformatics is identifying novel drug-target interactions (DTIs), which plays a crucial role in drug discovery. Most computational approaches treat DTI prediction as a binary classification problem, determining whether drug-target pairs interact. However, with the growing availability of drug-target binding affinity data, this binary task can be reframed as a regression problem focused on drug-target affinity (DTA). DTA quantifies the strength of drug-target binding, offering more detailed insights than DTI and serving as a valuable tool for virtual screening in drug discovery. Accurately predicting compound interactions with targets can accelerate the drug development process. In this study, we introduce a deep learning model named TC-DTA for DTA prediction, leveraging convolutional neural networks (CNN) and the encoder module of the transformer architecture. We begin by extracting raw drug SMILES strings and protein amino acid sequences from the dataset, which are then represented using various encoding methods. Subsequently, we employ CNN and the transformer's encoder module to extract features from the drug SMILES strings and protein sequences, respectively. Finally, the feature information is concatenated and input into a multi-layer perceptron to predict binding affinity scores. We evaluated our model on two benchmark DTA datasets, Davis and KIBA, comparing it with methods such as KronRLS, SimBoost, and DeepDTA. Our model, TC-DTA, outperformed these baseline methods based on evaluation metrics like Mean Squared Error (MSE), Concordance Index (CI), and Regression towards the Mean Index ( rm2 ). These results highlight the effectiveness of the Transformer's encoder and CNN in extracting meaningful representations from sequences, thereby enhancing DTA prediction accuracy. This deep learning model can accelerate drug discovery by identifying drug candidates with high binding affinity to specific targets. Compared to traditional methods, machine learning technology offers a more effective and efficient approach to drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brenda完成签到,获得积分10
1秒前
光亮若翠完成签到,获得积分10
3秒前
忧虑的静柏完成签到 ,获得积分10
6秒前
颜小喵完成签到 ,获得积分10
7秒前
悦耳的城完成签到 ,获得积分10
8秒前
七厘米完成签到,获得积分10
15秒前
单纯无声完成签到 ,获得积分10
22秒前
平凡世界完成签到 ,获得积分10
30秒前
Neko完成签到,获得积分10
30秒前
fbwg完成签到,获得积分10
30秒前
Johan完成签到 ,获得积分10
31秒前
松柏完成签到 ,获得积分10
33秒前
Song完成签到 ,获得积分10
36秒前
孙朱珠完成签到,获得积分10
38秒前
俊逸吐司完成签到 ,获得积分10
40秒前
feiyang完成签到 ,获得积分10
45秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
研友_VZG7GZ应助www采纳,获得10
54秒前
HY完成签到 ,获得积分10
56秒前
huluwa完成签到,获得积分10
57秒前
changfox完成签到,获得积分10
1分钟前
1分钟前
坚强的铅笔完成签到 ,获得积分10
1分钟前
www发布了新的文献求助10
1分钟前
pass完成签到 ,获得积分10
1分钟前
1分钟前
stiger完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
壮观的菠萝完成签到,获得积分10
1分钟前
蔡勇强完成签到 ,获得积分10
2分钟前
yafei完成签到 ,获得积分10
2分钟前
传奇3应助行走的猫采纳,获得30
2分钟前
卷心菜完成签到 ,获得积分10
2分钟前
泽锦臻完成签到,获得积分10
2分钟前
七叶花开完成签到 ,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Heart_of_Stone完成签到 ,获得积分10
2分钟前
Alanni完成签到 ,获得积分10
3分钟前
老实的乐儿完成签到 ,获得积分10
3分钟前
JamesPei应助huayan采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370