肿瘤微环境
癌症研究
T细胞
高内皮静脉
免疫系统
趋化因子
肿瘤进展
化学
CD8型
淋巴毒素
免疫学
生物
癌症
医学
内科学
作者
Disi An,Guoying Chen,Wei‐Yi Cheng,Katja Mohrs,Christina Adler,Namita T. Gupta,Gurinder S. Atwal,David J. DiLillo,Christopher Daly,John C. Lin,Frank Kuhnert
出处
期刊:Cancer Research
[American Association for Cancer Research]
日期:2024-08-13
标识
DOI:10.1158/0008-5472.can-23-2716
摘要
Abstract The presence of high endothelial venules (HEV) and tertiary lymphoid structures (TLS) in solid tumors is correlated with favorable prognosis and better responses to immune-checkpoint blockade (ICB) in many cancer types. Elucidation of the molecular mechanisms underlying intratumoral HEV and TLS formation and their contribution to anti-tumor responses may facilitate development of improved treatment strategies. Lymphotoxin beta receptor (LTβR) signaling is a critical regulator of lymph node organogenesis and can cooperate with antiangiogenic and ICB treatment to augment tumor-associated HEV formation. Here, we demonstrated that LTβR signaling modulates the tumor microenvironment via multiple mechanisms to promote anti-tumor T cell responses. Systemic activation of the LTβR pathway via agonistic antibody treatment induced tumor-specific HEV formation, upregulated the expression of TLS-related chemokines, and enhanced dendritic cell (DC) and T cell infiltration and activation in syngeneic tumor models. In vitro studies confirmed direct effects of LTβR agonism on DC activation and maturation and associated DC-mediated T cell activation. Single agent LTβR agonist treatment inhibited syngeneic tumor growth in a CD8+ T cell- and HEV-dependent manner, and the LTβR agonist enhanced anti-tumor effects of anti-PD-1 and CAR T cell therapies. An in vivo tumor screen for TLS-inducing cytokines revealed that the combination of LTβR agonism and lymphotoxin alpha (LT⍺) expression promoted robust intratumoral TLS induction and enhanced tumor responses to anti-CTLA-4 treatment. Collectively, this study highlights crucial functions of LTβR signaling in modulating the tumor microenvironment and could inform future HEV/TLS-based strategies for cancer treatments.
科研通智能强力驱动
Strongly Powered by AbleSci AI