亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-based conventional radiomics and quantification of intratumoral heterogeneity for predicting benign and malignant renal lesions

医学 一致性 无线电技术 放射科 一致相关系数 病变 核医学 病理 内科学 统计 数学
作者
Shuanbao Yu,Yang Yang,Zeyuan Wang,Haoke Zheng,Jinshan Cui,Yonghao Zhan,Junxiao Liu,Peng Li,Yafeng Fan,Wendong Jia,Meng Wang,Bo Chen,Tao Jin,Yuhong Li,Xuepei Zhang
出处
期刊:Cancer Imaging [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s40644-024-00775-8
摘要

Abstract Background With the increasing incidence of renal lesions, pretreatment differentiation between benign and malignant lesions is crucial for optimized management. This study aimed to develop a machine learning model utilizing radiomic features extracted from various regions of interest (ROIs), intratumoral ecological diversity features, and clinical factors to classify renal lesions. Methods CT images (arterial phase) of 1,795 renal lesions with confirmed pathology from three hospital sites were split into development (1184, 66%) and test (611, 34%) cohorts by surgery date. Conventional radiomic features were extracted from eight ROIs of arterial phase images. Intratumoral ecological diversity features were derived from intratumoral subregions. The combined model incorporating these features with clinical factors was developed, and its performance was compared with radiologists’ interpretation. Results Combining intratumoral and peritumoral radiomic features, along with ecological diversity features yielded the highest AUC of 0.929 among all combinations of features extracted from CT scans. After incorporating clinical factors into the features extracted from CT images, our combined model outperformed the interpretation of radiologists in the whole (AUC = 0.946 vs 0.823, P < 0.001) and small renal lesion (AUC = 0.935 vs 0.745, P < 0.001) test cohorts. Furthermore, the combined model exhibited favorable concordance and provided the highest net benefit across threshold probabilities exceeding 60%. In the whole and small renal lesion test cohorts, the AUCs for subgroups with predicted risk below or above 95% sensitivity and specificity cutoffs were 0.974 and 0.978, respectively. Conclusions The combined model, incorporating intratumoral and peritumoral radiomic features, ecological diversity features, and clinical factors showed good performance for distinguishing benign from malignant renal lesions, surpassing radiologists’ diagnoses in both whole and small renal lesions. It has the potential to save patients from unnecessary invasive biopsies/surgeries and to enhance clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456发布了新的文献求助10
1秒前
9秒前
11秒前
Joven发布了新的文献求助10
15秒前
容若完成签到,获得积分10
15秒前
顺利山柏发布了新的文献求助10
17秒前
Joven完成签到,获得积分20
25秒前
NexusExplorer应助科研小刘采纳,获得10
27秒前
FashionBoy应助啊呜采纳,获得10
44秒前
科研通AI2S应助科研小刘采纳,获得10
1分钟前
1分钟前
XZM发布了新的文献求助50
1分钟前
1分钟前
啊呜发布了新的文献求助10
1分钟前
啊呜完成签到,获得积分20
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
Winnie完成签到,获得积分10
1分钟前
2分钟前
bixiao发布了新的文献求助10
2分钟前
sailingluwl完成签到,获得积分10
2分钟前
2分钟前
自然的衫完成签到 ,获得积分10
2分钟前
3分钟前
寻道图强应助科研通管家采纳,获得30
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
Raunio完成签到,获得积分10
3分钟前
3分钟前
蔡俊辉发布了新的文献求助10
4分钟前
邹醉蓝完成签到,获得积分10
4分钟前
蔡俊辉完成签到,获得积分10
4分钟前
4分钟前
晓晓发布了新的文献求助10
4分钟前
脑洞疼应助晓晓采纳,获得10
4分钟前
hayk发布了新的文献求助10
4分钟前
fhiery完成签到,获得积分10
4分钟前
大先生完成签到 ,获得积分10
5分钟前
5分钟前
寻道图强应助科研通管家采纳,获得30
5分钟前
SciGPT应助科研通管家采纳,获得10
5分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806939
捐赠科研通 2449815
什么是DOI,文献DOI怎么找? 1303501
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314