Association of metabolic score for visceral fat with all‐cause mortality, cardiovascular mortality, and cancer mortality: A prospective cohort study

医学 危险系数 内科学 比例危险模型 死亡风险 置信区间 死亡率
作者
Shanshan Jia,Xingwei Huo,Xianghao Zuo,Liming Zhao,Lu Liu,Lirong Sun,Xiaoping Chen
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:26 (12): 5870-5881 被引量:8
标识
DOI:10.1111/dom.15959
摘要

Abstract Aim Our study aimed to evaluate the association between the metabolic score for visceral fat (METS‐VF) and mortality. Methods We conducted a cohort study comprising 11,120 participants. We employed weighted multivariable Cox regression analysis to assess the relationship between METS‐VF and mortality. Restricted cubic spline analyses were used to investigate potential non‐linear associations. Receiver operating characteristic curves were used to evaluate the predictive value of METS‐VF and other obesity‐related indicators for mortality. Subgroup analysis and sensitivity analysis were performed to confirm the robustness of the results. Mendelian randomization analysis was utilized to assess potential causality. Results Over a median follow‐up duration of 83 months, a total of 1014 all‐cause deaths, 301 cardiovascular deaths, and 262 cancer deaths occurred. For every 0.2‐unit increase in METS‐VF, the hazard ratios(HRs) of all‐cause mortality, cardiovascular mortality, and cancer mortality were 1.13 [95% confidence interval (CI): 1.06, 1.20], 1.18 (95% CI: 1.06, 1.31), and 1.13 (95% CI: 1.03, 1.25), respectively. In addition, restricted cubic spline analyses revealed no significant non‐linear associations between METS‐VF and all‐cause mortality, cardiovascular mortality, and cancer mortality. In multivariate Cox regression models, hazard ratios of all‐cause mortality, cardiovascular mortality and cancer mortality were higher in the highest METS‐VF group compared to the reference group. Subgroup and sensitivity analyses confirmed that our results were robust. Receiver operating characteristic curves indicated that METS‐VF predicted mortality better than other obesity‐related indicators. Mendelian randomization analysis confirmed significant causal relationships. Conclusions METS‐VF was positively associated with all‐cause mortality, cardiovascular mortality, and cancer mortality. These findings suggest that METS‐VF could serve as a straightforward, reliable, and cost‐effective marker for identifying individuals at high risk of mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tang完成签到,获得积分10
15秒前
qianci2009完成签到,获得积分0
16秒前
三杠完成签到 ,获得积分10
18秒前
康康完成签到 ,获得积分10
19秒前
Docsiwen完成签到 ,获得积分10
24秒前
拼搏的羊青完成签到,获得积分10
27秒前
cinnamonbrd完成签到,获得积分10
32秒前
燕儿完成签到 ,获得积分10
33秒前
jintian完成签到 ,获得积分10
43秒前
胡杨树2006完成签到,获得积分10
52秒前
量子星尘发布了新的文献求助10
58秒前
坦率雪枫完成签到 ,获得积分10
1分钟前
1分钟前
嗯嗯完成签到 ,获得积分10
1分钟前
1分钟前
23333完成签到,获得积分10
1分钟前
xxl3发布了新的文献求助10
1分钟前
123完成签到 ,获得积分10
1分钟前
风笛完成签到 ,获得积分10
1分钟前
jason完成签到 ,获得积分10
1分钟前
laber完成签到,获得积分0
1分钟前
张来完成签到 ,获得积分10
1分钟前
每天都要开心完成签到 ,获得积分10
1分钟前
刘菠萝完成签到 ,获得积分10
1分钟前
NexusExplorer应助zzt采纳,获得10
1分钟前
王海海完成签到 ,获得积分10
1分钟前
wonwojo完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
SciGPT应助xxl3采纳,获得10
1分钟前
Lrcx完成签到 ,获得积分10
1分钟前
QAQSS完成签到 ,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
CJW完成签到 ,获得积分10
2分钟前
RYYYYYYY233完成签到 ,获得积分10
2分钟前
耕牛热完成签到,获得积分10
2分钟前
大团长完成签到,获得积分10
2分钟前
追寻夏烟完成签到 ,获得积分10
2分钟前
微笑代荷完成签到 ,获得积分10
2分钟前
好运来发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910669
求助须知:如何正确求助?哪些是违规求助? 4186400
关于积分的说明 12999449
捐赠科研通 3953919
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186604
关于科研通互助平台的介绍 1093837