Machine learning-causal inference based on multi-omics data reveals the association of altered gut bacteria and bile acid metabolism with neonatal jaundice

代谢组 肠道菌群 生物 胆汁酸 代谢组学 微生物群 代谢物 黄疸 生理学 肠道微生物群 生物信息学 内科学 生物化学 医学
作者
Wan-Ling Chen,Peng Zhang,Xueli Zhang,Tiantian Xiao,Jianhai Zeng,Kaiping Guo,Huixian Qiu,Guoqiang Cheng,Zhangxing Wang,Wenhao Zhou,Shujuan Zeng,Mingbang Wang
出处
期刊:Gut microbes [Informa]
卷期号:16 (1): 2388805-2388805 被引量:14
标识
DOI:10.1080/19490976.2024.2388805
摘要

Early identification of neonatal jaundice (NJ) appears to be essential to avoid bilirubin encephalopathy and neurological sequelae. The interaction between gut microbiota and metabolites plays an important role in early life. It is unclear whether the composition of the gut microbiota and metabolites can be used as an early indicator of NJ or to aid clinical decision-making. This study involved a total of 196 neonates and conducted two rounds of "discovery-validation" research on the gut microbiome-metabolome. It utilized methods of machine learning, causal inference, and clinical prediction model evaluation to assess the significance of gut microbiota and metabolites in classifying neonatal jaundice (NJ), as well as the potential causal relationships between corresponding clinical variables and NJ. In the discovery stage, NJ-associated gut microbiota, network modules, and metabolite composition were identified by gut microbiome-metabolome association analysis. The NJ-associated gut microbiota was closely related to bile acid metabolites. By Lasso machine learning assessment, we found that the gut bacteria were associated with abnormal bile acid metabolism. The machine learning-causal inference approach revealed that gut bacteria affected serum total bilirubin and NJ by influencing bile acid metabolism. NJ-associated gut bile acids are potential biomarkers of NJ, and clinical prediction models constructed based on these biomarkers have some clinical effects and the model may be used for disease risk prediction. In the validation stage, it was found that intestinal metabolites can predict NJ, and the machine learning-causal inference approach revealed that bile acid metabolites affected NJ itself by affecting the total bilirubin content. Intestinal bile acid metabolites are potential biomarkers of NJ. By applying machine learning-causal inference methods to gut microbiome-metabolome association studies, we found NJ-associated intestinal bacteria and their network modules and bile acid metabolite composition. The important role of intestinal bacteria and bile acid metabolites in NJ was determined, which can predict the risk of NJ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的宛白完成签到,获得积分20
1秒前
3秒前
我崽了你发布了新的文献求助30
4秒前
5秒前
fanf完成签到,获得积分10
6秒前
完美世界应助mayun95采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
ashin17发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助cxw采纳,获得10
12秒前
12秒前
呼噜呼噜毛完成签到 ,获得积分10
14秒前
14秒前
烟花应助QinQin采纳,获得10
14秒前
JamesPei应助猪猪hero采纳,获得10
15秒前
15秒前
16秒前
黄颖完成签到,获得积分10
16秒前
18秒前
19秒前
CodeCraft应助Nora采纳,获得10
20秒前
灵巧帽子发布了新的文献求助20
21秒前
小吴同学发布了新的文献求助10
23秒前
黄芪2号完成签到,获得积分10
23秒前
23秒前
23秒前
Jes完成签到,获得积分10
24秒前
凶狠的棒棒糖关注了科研通微信公众号
24秒前
谦让雨柏完成签到 ,获得积分10
24秒前
24秒前
25秒前
25秒前
黄芪2号发布了新的文献求助10
26秒前
微笑翠桃发布了新的文献求助10
27秒前
浅蓝色的盛夏完成签到 ,获得积分10
28秒前
wen完成签到,获得积分10
28秒前
张123完成签到,获得积分10
30秒前
古月完成签到,获得积分10
30秒前
Cristina2024完成签到,获得积分10
31秒前
ssy发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716