Machine learning-causal inference based on multi-omics data reveals the association of altered gut bacteria and bile acid metabolism with neonatal jaundice

代谢组 肠道菌群 生物 胆汁酸 代谢组学 微生物群 代谢物 黄疸 生理学 肠道微生物群 生物信息学 内科学 生物化学 医学
作者
Wan-Ling Chen,Peng Zhang,Xueli Zhang,Tiantian Xiao,Jialin Zeng,Kaiping Guo,Huixian Qiu,Guoqiang Cheng,Zhangxing Wang,Wenhao Zhou,Shujuan Zeng,Mingbang Wang
出处
期刊:Gut microbes [Informa]
卷期号:16 (1)
标识
DOI:10.1080/19490976.2024.2388805
摘要

Early identification of neonatal jaundice (NJ) appears to be essential to avoid bilirubin encephalopathy and neurological sequelae. The interaction between gut microbiota and metabolites plays an important role in early life. It is unclear whether the composition of the gut microbiota and metabolites can be used as an early indicator of NJ or to aid clinical decision-making. This study involved a total of 196 neonates and conducted two rounds of "discovery-validation" research on the gut microbiome-metabolome. It utilized methods of machine learning, causal inference, and clinical prediction model evaluation to assess the significance of gut microbiota and metabolites in classifying neonatal jaundice (NJ), as well as the potential causal relationships between corresponding clinical variables and NJ. In the discovery stage, NJ-associated gut microbiota, network modules, and metabolite composition were identified by gut microbiome-metabolome association analysis. The NJ-associated gut microbiota was closely related to bile acid metabolites. By Lasso machine learning assessment, we found that the gut bacteria were associated with abnormal bile acid metabolism. The machine learning-causal inference approach revealed that gut bacteria affected serum total bilirubin and NJ by influencing bile acid metabolism. NJ-associated gut bile acids are potential biomarkers of NJ, and clinical prediction models constructed based on these biomarkers have some clinical effects and the model may be used for disease risk prediction. In the validation stage, it was found that intestinal metabolites can predict NJ, and the machine learning-causal inference approach revealed that bile acid metabolites affected NJ itself by affecting the total bilirubin content. Intestinal bile acid metabolites are potential biomarkers of NJ. By applying machine learning-causal inference methods to gut microbiome-metabolome association studies, we found NJ-associated intestinal bacteria and their network modules and bile acid metabolite composition. The important role of intestinal bacteria and bile acid metabolites in NJ was determined, which can predict the risk of NJ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助一抔之土采纳,获得10
1秒前
Viva应助自然的雅琴采纳,获得20
2秒前
3秒前
庄冬丽完成签到,获得积分10
5秒前
耶耶完成签到 ,获得积分10
6秒前
Meiyu发布了新的文献求助10
7秒前
8秒前
yinzy完成签到,获得积分10
8秒前
刻苦羽毛完成签到 ,获得积分10
10秒前
空山新雨后完成签到,获得积分10
10秒前
Cruffin完成签到 ,获得积分10
12秒前
有终完成签到 ,获得积分10
13秒前
wure10完成签到 ,获得积分10
13秒前
14秒前
14秒前
???完成签到,获得积分10
14秒前
科研通AI2S应助Meiyu采纳,获得10
16秒前
小董不懂发布了新的文献求助10
17秒前
甜美的夏之完成签到,获得积分10
17秒前
Bsisoy完成签到,获得积分10
17秒前
17秒前
思源应助笨笨平松采纳,获得10
18秒前
纯牛奶完成签到,获得积分10
18秒前
Atlantis完成签到,获得积分10
18秒前
Dreames发布了新的文献求助10
19秒前
19秒前
20秒前
李东东完成签到 ,获得积分10
20秒前
李健的小迷弟应助feng_qi001采纳,获得10
22秒前
Frieren完成签到 ,获得积分10
23秒前
谢谢完成签到 ,获得积分10
23秒前
大个应助Dreames采纳,获得10
24秒前
Mry完成签到,获得积分10
25秒前
hyw完成签到,获得积分10
25秒前
苹果追命发布了新的文献求助10
26秒前
努力向上的小刘完成签到 ,获得积分10
26秒前
joybee完成签到,获得积分0
27秒前
宁学者完成签到,获得积分10
27秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137155
求助须知:如何正确求助?哪些是违规求助? 2788182
关于积分的说明 7784837
捐赠科研通 2444146
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011