Machine learning-causal inference based on multi-omics data reveals the association of altered gut bacteria and bile acid metabolism with neonatal jaundice

代谢组 肠道菌群 生物 胆汁酸 代谢组学 微生物群 代谢物 黄疸 生理学 肠道微生物群 生物信息学 内科学 生物化学 医学
作者
Wan-Ling Chen,Peng Zhang,Xueli Zhang,Tiantian Xiao,Jianhai Zeng,Kaiping Guo,Huixian Qiu,Guoqiang Cheng,Zhangxing Wang,Wenhao Zhou,Shujuan Zeng,Mingbang Wang
出处
期刊:Gut microbes [Landes Bioscience]
卷期号:16 (1) 被引量:3
标识
DOI:10.1080/19490976.2024.2388805
摘要

Early identification of neonatal jaundice (NJ) appears to be essential to avoid bilirubin encephalopathy and neurological sequelae. The interaction between gut microbiota and metabolites plays an important role in early life. It is unclear whether the composition of the gut microbiota and metabolites can be used as an early indicator of NJ or to aid clinical decision-making. This study involved a total of 196 neonates and conducted two rounds of "discovery-validation" research on the gut microbiome-metabolome. It utilized methods of machine learning, causal inference, and clinical prediction model evaluation to assess the significance of gut microbiota and metabolites in classifying neonatal jaundice (NJ), as well as the potential causal relationships between corresponding clinical variables and NJ. In the discovery stage, NJ-associated gut microbiota, network modules, and metabolite composition were identified by gut microbiome-metabolome association analysis. The NJ-associated gut microbiota was closely related to bile acid metabolites. By Lasso machine learning assessment, we found that the gut bacteria were associated with abnormal bile acid metabolism. The machine learning-causal inference approach revealed that gut bacteria affected serum total bilirubin and NJ by influencing bile acid metabolism. NJ-associated gut bile acids are potential biomarkers of NJ, and clinical prediction models constructed based on these biomarkers have some clinical effects and the model may be used for disease risk prediction. In the validation stage, it was found that intestinal metabolites can predict NJ, and the machine learning-causal inference approach revealed that bile acid metabolites affected NJ itself by affecting the total bilirubin content. Intestinal bile acid metabolites are potential biomarkers of NJ. By applying machine learning-causal inference methods to gut microbiome-metabolome association studies, we found NJ-associated intestinal bacteria and their network modules and bile acid metabolite composition. The important role of intestinal bacteria and bile acid metabolites in NJ was determined, which can predict the risk of NJ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助galaxy采纳,获得10
刚刚
刚刚
Leyna给Leyna的求助进行了留言
2秒前
酷波er应助星期一采纳,获得10
3秒前
4秒前
4秒前
燕真完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助50
4秒前
5秒前
二十三号发布了新的文献求助10
5秒前
酷酷问夏发布了新的文献求助10
6秒前
可爱的函函应助脆脆鲨采纳,获得10
6秒前
7秒前
韩晚渔发布了新的文献求助10
9秒前
怡然凌柏发布了新的文献求助10
10秒前
515完成签到,获得积分10
10秒前
张振发布了新的文献求助30
11秒前
端庄擎发布了新的文献求助10
11秒前
Delia完成签到 ,获得积分10
11秒前
善学以致用应助Colin采纳,获得10
12秒前
12秒前
shuilu关注了科研通微信公众号
12秒前
张振宇完成签到 ,获得积分10
13秒前
15秒前
15秒前
16秒前
16秒前
17秒前
18秒前
18秒前
量子星尘发布了新的文献求助50
19秒前
科研通AI6应助阿伟采纳,获得10
19秒前
彦卿发布了新的文献求助10
19秒前
刘旦生完成签到,获得积分10
19秒前
无限发布了新的文献求助50
20秒前
01完成签到 ,获得积分10
20秒前
kkny发布了新的文献求助100
20秒前
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123961
求助须知:如何正确求助?哪些是违规求助? 4328299
关于积分的说明 13487058
捐赠科研通 4162704
什么是DOI,文献DOI怎么找? 2281736
邀请新用户注册赠送积分活动 1283059
关于科研通互助平台的介绍 1222170