Machine learning-causal inference based on multi-omics data reveals the association of altered gut bacteria and bile acid metabolism with neonatal jaundice

代谢组 肠道菌群 生物 胆汁酸 代谢组学 微生物群 代谢物 黄疸 生理学 肠道微生物群 生物信息学 内科学 生物化学 医学
作者
Wan-Ling Chen,Peng Zhang,Xueli Zhang,Tiantian Xiao,Jianhai Zeng,Kaiping Guo,Huixian Qiu,Guoqiang Cheng,Zhangxing Wang,Wenhao Zhou,Shujuan Zeng,Mingbang Wang
出处
期刊:Gut microbes [Informa]
卷期号:16 (1) 被引量:3
标识
DOI:10.1080/19490976.2024.2388805
摘要

Early identification of neonatal jaundice (NJ) appears to be essential to avoid bilirubin encephalopathy and neurological sequelae. The interaction between gut microbiota and metabolites plays an important role in early life. It is unclear whether the composition of the gut microbiota and metabolites can be used as an early indicator of NJ or to aid clinical decision-making. This study involved a total of 196 neonates and conducted two rounds of "discovery-validation" research on the gut microbiome-metabolome. It utilized methods of machine learning, causal inference, and clinical prediction model evaluation to assess the significance of gut microbiota and metabolites in classifying neonatal jaundice (NJ), as well as the potential causal relationships between corresponding clinical variables and NJ. In the discovery stage, NJ-associated gut microbiota, network modules, and metabolite composition were identified by gut microbiome-metabolome association analysis. The NJ-associated gut microbiota was closely related to bile acid metabolites. By Lasso machine learning assessment, we found that the gut bacteria were associated with abnormal bile acid metabolism. The machine learning-causal inference approach revealed that gut bacteria affected serum total bilirubin and NJ by influencing bile acid metabolism. NJ-associated gut bile acids are potential biomarkers of NJ, and clinical prediction models constructed based on these biomarkers have some clinical effects and the model may be used for disease risk prediction. In the validation stage, it was found that intestinal metabolites can predict NJ, and the machine learning-causal inference approach revealed that bile acid metabolites affected NJ itself by affecting the total bilirubin content. Intestinal bile acid metabolites are potential biomarkers of NJ. By applying machine learning-causal inference methods to gut microbiome-metabolome association studies, we found NJ-associated intestinal bacteria and their network modules and bile acid metabolite composition. The important role of intestinal bacteria and bile acid metabolites in NJ was determined, which can predict the risk of NJ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助doudou采纳,获得10
1秒前
拾陆完成签到,获得积分20
1秒前
皮皮琪完成签到,获得积分10
1秒前
2秒前
阿玺发布了新的文献求助10
2秒前
稳重迎梦完成签到 ,获得积分10
2秒前
勤恳醉柳发布了新的文献求助10
2秒前
无花果应助zz采纳,获得10
2秒前
2秒前
谭飞扬完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
CodeCraft应助yatou采纳,获得10
3秒前
张教授完成签到 ,获得积分10
3秒前
4秒前
YNHN发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
稻草人拿七朵花完成签到 ,获得积分10
5秒前
6秒前
6秒前
善学以致用应助无尘泪采纳,获得10
6秒前
blank12发布了新的文献求助10
7秒前
7秒前
bian发布了新的文献求助10
7秒前
kang_aaa关注了科研通微信公众号
7秒前
周z2351198754完成签到,获得积分10
8秒前
张紫茹发布了新的文献求助10
8秒前
Owen应助外向的芒果采纳,获得10
8秒前
F123发布了新的文献求助10
8秒前
fuuu发布了新的文献求助10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
Z.zz发布了新的文献求助10
9秒前
9秒前
WFZ发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508259
求助须知:如何正确求助?哪些是违规求助? 4603561
关于积分的说明 14486351
捐赠科研通 4537753
什么是DOI,文献DOI怎么找? 2486753
邀请新用户注册赠送积分活动 1469227
关于科研通互助平台的介绍 1441618