亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic tumor segmentation and lymph node metastasis prediction in papillary thyroid carcinoma using ultrasound keyframes

医学 分割 放射科 甲状腺癌 接收机工作特性 人工智能 卷积神经网络 淋巴结 计算机科学 颈淋巴结 超声波 转移 甲状腺 癌症 内科学
作者
Xian‐Ya Zhang,Di Zhang,Zhiyuan Wang,Jun Chen,Jia‐Yu Ren,Ting Ma,Jianjun Lin,Christoph F. Dietrich,Xin‐Wu Cui
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17498
摘要

Abstract Background Accurate preoperative prediction of cervical lymph node metastasis (LNM) for papillary thyroid carcinoma (PTC) patients is essential for disease staging and individualized treatment planning, which can improve prognosis and facilitate better management. Purpose To establish a fully automated deep learning‐enabled model (FADLM) for automated tumor segmentation and cervical LNM prediction in PTC using ultrasound (US) video keyframes. Methods The bicentral study retrospective enrolled 518 PTC patients, who were then randomly divided into the training (Hospital 1, n = 340), internal test (Hospital 1, n = 83), and external test cohorts (Hospital 2, n = 95). The FADLM integrated mask region‐based convolutional neural network (Mask R‐CNN) for automatic thyroid primary tumor segmentation and ResNet34 with Bayes strategy for cervical LNM diagnosis. A radiomics model (RM) using the same automated segmentation method, a traditional radiomics model (TRM) using manual segmentation, and a clinical‐semantic model (CSM) were developed for comparison. The dice similarity coefficient (DSC) was used to evaluate segmentation performance. The prediction performance of the models was validated in terms of discrimination and clinical utility with the area under the receiver operator characteristic curve (AUC), heatmap analysis, and decision curve analysis (DCA). The comparison of the predictive performance among different models was conducted by DeLong test. The performances of two radiologists compared with FADLM and the diagnostic augmentation with FADLM's assistance were analyzed in terms of accuracy, sensitivity and specificity using McNemar's x 2 test. The p ‐value less than 0.05 was defined as a statistically significant difference. The Benjamini‐Hochberg procedure was applied for multiple comparisons to deal with Type I error. Results The FADLM yielded promising segmentation results in training (DSC: 0.88 ± 0.23), internal test (DSC: 0.88 ± 0.23), and external test cohorts (DSC: 0.85 ± 0.24). The AUCs of FADLM for cervical LNM prediction were 0.78 (95% CI: 0.73, 0.83), 0.83 (95% CI: 0.74, 0.92), and 0.83 (95% CI: 0.75, 0.92), respectively. It all significantly outperformed the RM (AUCs: 0.78 vs. 0.72; 0.83 vs. 0.65; 0.83 vs. 0.68, all adjusted p ‐values < 0.05) and CSM (AUCs: 0.78 vs. 0.71; 0.83 vs. 0.62; 0.83 vs. 0.68, all adjusted p ‐values < 0.05) across the three cohorts. The RM offered similar performance to that of TRM (AUCs: 0.61 vs. 0.63, adjusted p ‐value = 0.60) while significantly reducing the segmentation time (3.3 ± 3.8 vs. 14.1 ± 4.2 s, p ‐value < 0.001). Under the assistance of FADLM, the accuracies of junior and senior radiologists were improved by 18% and 15% (all adjusted p ‐values < 0.05) and the sensitivities by 25% and 21% (all adjusted p ‐values < 0.05) in the external test cohort. Conclusion The FADLM with elaborately designed automated strategy using US video keyframes holds good potential to provide an efficient and consistent prediction of cervical LNM in PTC. The FADLM displays superior performance to RM, CSM, and radiologists with promising efficacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助陶醉羽毛采纳,获得10
2秒前
26秒前
cc发布了新的文献求助10
29秒前
幽默赛君完成签到 ,获得积分10
37秒前
zr完成签到 ,获得积分10
45秒前
搜集达人应助科研通管家采纳,获得10
1分钟前
韩韩完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
子平完成签到 ,获得积分10
2分钟前
Weiyu完成签到 ,获得积分10
2分钟前
Alk完成签到,获得积分10
2分钟前
852应助科研通管家采纳,获得10
3分钟前
CodeCraft应助ly采纳,获得10
3分钟前
科研通AI5应助毛不二采纳,获得10
3分钟前
罗是一完成签到,获得积分10
3分钟前
罗是一发布了新的文献求助10
3分钟前
4分钟前
一尾鱼完成签到,获得积分10
4分钟前
毛不二发布了新的文献求助10
4分钟前
简单双组完成签到,获得积分10
4分钟前
酷波er应助Niki采纳,获得30
4分钟前
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
Xiaoxiao应助科研通管家采纳,获得10
5分钟前
华仔应助春风采纳,获得10
5分钟前
嘟嘟噜发布了新的文献求助10
5分钟前
ding应助春风采纳,获得10
5分钟前
5分钟前
嘟嘟噜完成签到,获得积分10
5分钟前
Niki发布了新的文献求助30
5分钟前
5分钟前
5分钟前
早岁完成签到,获得积分10
5分钟前
无花果应助费老三采纳,获得10
5分钟前
陶醉羽毛发布了新的文献求助10
5分钟前
6分钟前
费老三发布了新的文献求助10
6分钟前
慕青应助过时的起眸采纳,获得10
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555736
求助须知:如何正确求助?哪些是违规求助? 3131355
关于积分的说明 9390838
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803