闪烁体
发光
铜
碘化物
材料科学
X射线
星团(航天器)
放射发光
光电子学
光学
探测器
物理
化学
计算机科学
无机化学
冶金
程序设计语言
作者
Yanze Wang,Tinghao Zhang,Wenjing Zhao,Weidong Xu,Zhongbin Wu,Yung Doug Suh,Yuezhou Zhang,Xiaowang Liu,Wei Huang
标识
DOI:10.1002/anie.202413672
摘要
Developing efficient scintillators with environmentally friendly compositions, adaptable bandgaps, and robust chemical stability is crucial for modern X‐ray radiography. While copper(I)‐iodide cluster crystals show promise, the vast design space of inorganic cores and organic ligands poses challenges for conventional approaches. In this study, we present machine learning‐guided discovery of copper(I)‐iodide cluster scintillators for efficient X‐ray luminescence imaging. Our findings reveal that combining base learning models with fused features enhances model generalization, achieving an impressive determination coefficient of 0.88. By leveraging this approach, we obtain a high‐performance Cu(I)‐I cluster scintillator, named copper iodide‐(1‐Butyl‐1,4‐diazabicyclo[2.2.2]octan‐1‐ium)2, which exhibit radioluminescence 56 times stronger than that of PbWO4, and enables a detection limit for X‐rays of 19.6 nGyair s−1. Furthermore, we demonstrate the versatility of these scintillators by incorporating them as microfillers in the fabrication of flexible composite scintillators for X‐ray imaging, achieving a static resolution of 20 lp mm−1 and demonstrating promising performance for dynamic X‐ray imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI