闪烁体
发光
铜
碘化物
材料科学
X射线
星团(航天器)
光电子学
光学
探测器
物理
化学
计算机科学
无机化学
操作系统
冶金
作者
Yanze Wang,Tinghao Zhang,Wenjing Zhao,Weidong Xu,Zhongbin Wu,Yung Doug Suh,Yuezhou Zhang,Xiaowang Liu,Wei Huang
标识
DOI:10.1002/anie.202413672
摘要
Developing efficient scintillators with environmentally friendly compositions, adaptable band gaps, and robust chemical stability is crucial for modern X-ray radiography. While copper(I)-iodide cluster crystals show promise, the vast design space of inorganic cores and organic ligands poses challenges for conventional approaches. In this study, we present machine learning-guided discovery of copper(I)-iodide cluster scintillators for efficient X-ray luminescence imaging. Our findings reveal that combining base learning models with fused features enhances model generalization, achieving an impressive determination coefficient of 0.88. By leveraging this approach, we obtain a high-performance Cu(I)-I cluster scintillator, named copper iodide-(1-Butyl-1,4-diazabicyclo[2.2.2]octan-1-ium)
科研通智能强力驱动
Strongly Powered by AbleSci AI