作者
Wenhe Zhang,Jing Zhang,Chengbing Wang,Jing Shi,Dan Wei,Zexiang Zhao,Fan Wang
摘要
Abstract Almost all reported solar anti‐/defogging surfaces are black and opaque. However, aesthetics and transparency are preferred to enhance security, privacy, and visual experience without sacrificing antifogging in some practical scenarios, such as automotive windshields, architectural glass facades, and sports goggles. Herein, a color and transparency bi‐customizable solar antifogging heterostructure nanofilms is reported, which only consists of a Ti–TiO x layer for partial visible light transmission and a narrow bandgap Ti 2 O 3 layer for broadband sunlight absorption. By precisely controlling each monolayer thickness, various vibrant structural colors (covering yellow/green/purple/blue) through interference effects, along with tunable visible light transparency (from 0% to 30%), and broadband solar absorption (up to 90%) are obtained, providing personalized options for various applications. Simultaneously, the nanofilms exhibit remarkable photothermal performance (110.3 °C under 1 kW m −2 irradiation) compared to blank samples, demonstrating sustained and superior defogging (3.5‐fold improvement) and antifogging capabilities, even in extremely cold (–20 °C) or high temperature and high humidity (50 °C, 100%) conditions. Importantly, the nanofilms are just 174 nm thick, and can be easily upgraded and scalable fabricated by sputtering on various rigid, flexible and portable substrates, such as glass, metals, textiles, plastics, enabling a wide range of direct applications.