Identification of core genes in intervertebral disc degeneration using bioinformatics and machine learning algorithms

Lasso(编程语言) 基因 候选基因 微阵列分析技术 计算生物学 白细胞介素1受体,I型 微阵列 小桶 生物 生物信息学 基因表达 遗传学 计算机科学 转录组 白细胞介素-21受体 万维网
作者
Hao Zhang,Shengbo Shi,Xingxing Huang,Changsheng Gong,Zijing Zhang,Zetian Zhao,Junxiao Gao,Meng Zhang,Xiaobing Yu
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1401957
摘要

Background Intervertebral Disc Degeneration (IDD) is a major cause of lower back pain and a significant global health issue. However, the specific mechanisms of IDD remain unclear. This study aims to identify key genes and pathways associated with IDD using bioinformatics and machine learning algorithms. Methods Gene expression profiles, including those from 35 LDH patients and 43 healthy volunteers, were downloaded from the GEO database (GSE124272, GSE150408, GSE23130, GSE153761). After merging four microarray datasets, differentially expressed genes (DEGs) were selected for GO and KEGG pathway enrichment analysis. Weighted Gene Co-expression Network Analysis (WGCNA) was then applied to the merged dataset to identify relevant modules and intersect with DEGs to discover candidate genes with diagnostic value. A LASSO model was established to select appropriate genes, and ROC curves were drawn to elucidate the diagnostic value of genetic markers. A Protein-Protein Interaction (PPI) network was constructed and visualized to determine central genes, followed by external validation using qRT-PCR. Results Differential analysis of the preprocessed dataset identified 244 genes, including 183 upregulated and 61 downregulated genes. WGCNA analysis revealed the most relevant module intersecting with DEGs, yielding 9 candidate genes. The lasso-cox method was used for regression analysis, ultimately identifying 6 genes: ASPH, CDC42EP3, FOSL2, IL1R1, NFKBIZ, TCF7L2. A Protein-Protein Interaction (PPI) network created with GENEMANIA identified IL1R1 and TCF7L2 as central genes. Conclusion Our study shows that IL1R1 and TCF7L2 are the core genes of IDD, offering new insights into the pathogenesis and therapeutic development of IDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
muyan完成签到 ,获得积分10
1秒前
1秒前
2秒前
2y发布了新的文献求助10
3秒前
QiiiMengfan发布了新的文献求助10
3秒前
yang发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
SYLH应助霏166采纳,获得20
5秒前
pluto应助张雯思采纳,获得10
6秒前
汉堡包应助张雯思采纳,获得10
6秒前
核桃应助张雯思采纳,获得10
6秒前
核桃应助张雯思采纳,获得10
6秒前
8秒前
Cumin发布了新的文献求助10
9秒前
感动背包发布了新的文献求助30
10秒前
theseus完成签到,获得积分10
12秒前
Owen应助yang采纳,获得10
14秒前
14秒前
14秒前
小狗不是抠脚兵完成签到,获得积分10
16秒前
熊啊小明关注了科研通微信公众号
17秒前
欢呼善斓发布了新的文献求助10
17秒前
yyw完成签到 ,获得积分10
18秒前
郑烨发布了新的文献求助10
18秒前
21秒前
yang完成签到,获得积分10
22秒前
24秒前
可爱的函函应助满眼星辰采纳,获得10
25秒前
25秒前
2y完成签到,获得积分10
26秒前
bkagyin应助吾问无为谓啊采纳,获得10
27秒前
李帅发布了新的文献求助10
28秒前
Ginkgo发布了新的文献求助10
28秒前
感动背包完成签到,获得积分10
29秒前
该饮茶了发布了新的文献求助10
29秒前
不能说的秘密完成签到,获得积分10
30秒前
舒克完成签到,获得积分10
31秒前
木木应助lovekobe采纳,获得10
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167