High-Fidelity and Efficient Pluralistic Image Completion with Transformers

计算机科学 人工智能 忠诚 计算机视觉 变压器 图像处理 图像分割 图像(数学) 模式识别(心理学) 工程类 电压 电信 电气工程
作者
Ziyu Wan,Jingbo Zhang,Dongdong Chen,Jing Liao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-19
标识
DOI:10.1109/tpami.2024.3424835
摘要

Image completion has made tremendous progress with convolutional neural networks (CNNs), because of their powerful texture modeling capacity. However, due to some inherent properties (e.g., local inductive prior, spatial-invariant kernels), CNNs do not perform well in understanding global structures or naturally support pluralistic completion. Recently, transformers demonstrate their power in modeling the long-term relationship and generating diverse results, but their computation complexity is quadratic to input length, thus hampering the application in processing high-resolution images. This paper brings the best of both worlds to pluralistic image completion: appearance prior reconstruction with transformer and texture replenishment with CNN. The former transformer recovers pluralistic coherent structures together with some coarse textures, while the latter CNN enhances the local texture details of coarse priors guided by the high-resolution masked images. To decode diversified outputs from transformers, auto-regressive sampling is the most common method, but with extremely low efficiency. We further overcome this issue by proposing a new decoding strategy, temperature annealing probabilistic sampling (TAPS), which firstly achieves more than 70× speedup of inference at most, meanwhile maintaining the high quality and diversity of the sampled global structures. Moreover, we find the full CNN architecture will lead to suboptimal solutions for guided upsampling. To render more realistic and coherent contents, we design a novel module, named texture-aware guided attention, to concurrently consider the procedures of texture copy and generation, meanwhile raising several important modifications to solve the boundary artifacts. Through dense experiments, we found the proposed method vastly outperforms state-of-the-art methods in terms of four aspects: 1) large performance boost on image fidelity even compared to deterministic completion methods; 2) better diversity and higher fidelity for pluralistic completion; 3) exceptional generalization ability on large masks and generic dataset, like ImageNet. 4) Much higher decoding efficiency over previous auto-regressive based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坩埚钳发布了新的文献求助10
刚刚
卡皮巴拉完成签到 ,获得积分10
刚刚
ggyybb完成签到 ,获得积分10
1秒前
樂酉发布了新的文献求助10
2秒前
SciGPT应助白茶泡泡球采纳,获得10
3秒前
Lucas应助水水小牛采纳,获得50
3秒前
muyu发布了新的文献求助10
3秒前
4秒前
5秒前
花的微笑发布了新的文献求助10
8秒前
SRsora发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
11秒前
11秒前
12秒前
依依完成签到 ,获得积分10
12秒前
12秒前
13秒前
266完成签到 ,获得积分10
13秒前
highting发布了新的文献求助10
14秒前
14秒前
舒服的鱼完成签到 ,获得积分10
14秒前
对手完成签到 ,获得积分10
15秒前
LinHan发布了新的文献求助10
16秒前
领导范儿应助魔幻的盼秋采纳,获得10
16秒前
鲑鱼完成签到 ,获得积分10
16秒前
Lm发布了新的文献求助10
17秒前
18秒前
18秒前
Angie发布了新的文献求助10
18秒前
想吃冰激凌么完成签到 ,获得积分20
19秒前
深情安青应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
www应助科研通管家采纳,获得10
20秒前
李健应助muyu采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460