High-Fidelity and Efficient Pluralistic Image Completion with Transformers

计算机科学 人工智能 忠诚 计算机视觉 变压器 图像处理 图像分割 图像(数学) 模式识别(心理学) 工程类 电压 电信 电气工程
作者
Ziyu Wan,Jingbo Zhang,Dongdong Chen,Jing Liao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19
标识
DOI:10.1109/tpami.2024.3424835
摘要

Image completion has made tremendous progress with convolutional neural networks (CNNs), because of their powerful texture modeling capacity. However, due to some inherent properties (e.g., local inductive prior, spatial-invariant kernels), CNNs do not perform well in understanding global structures or naturally support pluralistic completion. Recently, transformers demonstrate their power in modeling the long-term relationship and generating diverse results, but their computation complexity is quadratic to input length, thus hampering the application in processing high-resolution images. This paper brings the best of both worlds to pluralistic image completion: appearance prior reconstruction with transformer and texture replenishment with CNN. The former transformer recovers pluralistic coherent structures together with some coarse textures, while the latter CNN enhances the local texture details of coarse priors guided by the high-resolution masked images. To decode diversified outputs from transformers, auto-regressive sampling is the most common method, but with extremely low efficiency. We further overcome this issue by proposing a new decoding strategy, temperature annealing probabilistic sampling (TAPS), which firstly achieves more than 70× speedup of inference at most, meanwhile maintaining the high quality and diversity of the sampled global structures. Moreover, we find the full CNN architecture will lead to suboptimal solutions for guided upsampling. To render more realistic and coherent contents, we design a novel module, named texture-aware guided attention, to concurrently consider the procedures of texture copy and generation, meanwhile raising several important modifications to solve the boundary artifacts. Through dense experiments, we found the proposed method vastly outperforms state-of-the-art methods in terms of four aspects: 1) large performance boost on image fidelity even compared to deterministic completion methods; 2) better diversity and higher fidelity for pluralistic completion; 3) exceptional generalization ability on large masks and generic dataset, like ImageNet. 4) Much higher decoding efficiency over previous auto-regressive based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气尔安发布了新的文献求助10
刚刚
1秒前
Max发布了新的文献求助10
2秒前
科研通AI2S应助WX采纳,获得10
2秒前
乐乐应助eAN采纳,获得10
2秒前
GBY发布了新的文献求助20
2秒前
3秒前
丘比特应助王小胖采纳,获得10
4秒前
华仔应助小柠檬采纳,获得10
5秒前
diipgzfh完成签到,获得积分10
5秒前
岑岑岑完成签到,获得积分10
6秒前
卡思完成签到,获得积分10
7秒前
7秒前
Su发布了新的文献求助10
7秒前
汉堡包应助王九八采纳,获得10
7秒前
7秒前
vvei发布了新的文献求助10
8秒前
8秒前
SCT发布了新的文献求助10
8秒前
Alvin发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
嗯嗯发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
123完成签到,获得积分10
12秒前
Rainbow完成签到,获得积分10
12秒前
852应助sandy采纳,获得10
12秒前
冷静的铅笔应助asdfqwer采纳,获得10
13秒前
一路高飛发布了新的文献求助30
13秒前
郝老头完成签到,获得积分0
14秒前
WX发布了新的文献求助10
14秒前
李爱国应助laura采纳,获得10
17秒前
Weining发布了新的文献求助10
17秒前
18秒前
Harper发布了新的文献求助30
18秒前
小小沙发布了新的文献求助10
18秒前
李健的粉丝团团长应助wwww采纳,获得10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655