Assessment of Emphysema on X-ray Equivalent Dose Photon-Counting Detector CT

医学 核医学 图像质量 放射科 肺气肿 射线照相术 人工智能 内科学 计算机科学 图像(数学)
作者
Bjarne Kerber,Falko Ensle,Jonas Kroschke,Cecilia Strappa,Anna Rita Larici,Thomas Frauenfelder,Lisa Jungblut
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/rli.0000000000001128
摘要

Objectives The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials. Methods One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read. In the second step, automated emphysema quantification was performed using an established LAV algorithm with a threshold of −950 HU and a commercially available deep learning model for automated emphysema quantification. Automated estimations of emphysema extent were converted and compared with visual scoring ratings. Results X-ray dose scans exhibited a significantly lower computed tomography dose index than low-dose scans (low-dose: 0.66 ± 0.16 mGy, x-ray dose: 0.11 ± 0.03 mGy, P < 0.001). Interreader agreement between low- and x-ray dose for visual emphysema scoring was excellent (κ = 0.83). Visual emphysema scoring consensus showed good agreement between low-dose and x-ray dose scans (κ = 0.70), with significant and strong correlation (Spearman ρ = 0.79). Although trace emphysema was underestimated in x-ray dose scans, there was no significant difference in the detection of higher-grade (mild to advanced destructive) emphysema ( P = 0.125) between the 2 scan doses. Although predicted emphysema volumes on x-ray dose scans for the LAV method showed strong and the deep learning model excellent significant correlations with predictions on low-dose scans, both methods significantly overestimated emphysema volumes on lower quality scans ( P < 0.001), with the deep learning model being more robust. Further, deep learning emphysema severity estimations showed higher agreement (κ = 0.65) and correlation (Spearman ρ = 0.64) with visual scoring for low-dose scans than LAV predictions (κ = 0.48, Spearman ρ = 0.45). Conclusions The severity of emphysema can be reliably estimated using visual scoring on CT scans performed with x-ray equivalent doses on a PCD-CT. A deep learning algorithm demonstrated good agreement and strong correlation with the visual scoring method on low-dose scans. However, both the deep learning and LAV algorithms overestimated emphysema extent on x-ray dose scans. Nonetheless, x-ray equivalent radiation dose scans may revolutionize the detection and monitoring of disease in chronic obstructive pulmonary disease patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jessica发布了新的文献求助10
刚刚
鲸落完成签到,获得积分20
1秒前
Moyan4332发布了新的文献求助10
1秒前
寄寄寄寄寄了应助ZYao65采纳,获得10
3秒前
小二郎应助朝暮星河采纳,获得10
4秒前
4秒前
英俊的铭应助激昂的南烟采纳,获得10
5秒前
Nemo97完成签到,获得积分10
5秒前
荒天帝石昊完成签到,获得积分10
5秒前
甜美无剑发布了新的文献求助10
7秒前
gyhuang发布了新的文献求助10
7秒前
风从虎完成签到 ,获得积分10
7秒前
7秒前
小宋发布了新的文献求助10
8秒前
9秒前
Sakura发布了新的文献求助10
9秒前
9秒前
9秒前
xu完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
dingding完成签到 ,获得积分20
11秒前
脑洞疼应助OldFly采纳,获得10
11秒前
ZJJ完成签到,获得积分10
11秒前
喂喂喂威发布了新的文献求助10
11秒前
14秒前
英俊的铭应助aaaa采纳,获得10
14秒前
泡泡果发布了新的文献求助10
14秒前
14秒前
gyhuang完成签到,获得积分10
14秒前
落后的小猫咪完成签到,获得积分10
15秒前
15秒前
鲸落发布了新的文献求助10
15秒前
坚定寒天完成签到 ,获得积分10
16秒前
17秒前
zzz发布了新的文献求助10
17秒前
朝暮星河发布了新的文献求助10
17秒前
yby完成签到,获得积分10
19秒前
CJZ关闭了CJZ文献求助
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011501
求助须知:如何正确求助?哪些是违规求助? 3551133
关于积分的说明 11307791
捐赠科研通 3285391
什么是DOI,文献DOI怎么找? 1811040
邀请新用户注册赠送积分活动 886767
科研通“疑难数据库(出版商)”最低求助积分说明 811636