Assessment of Emphysema on X-ray Equivalent Dose Photon-Counting Detector CT

医学 核医学 图像质量 放射科 肺气肿 射线照相术 人工智能 内科学 计算机科学 图像(数学)
作者
Bjarne Kerber,Falko Ensle,Jonas Kroschke,Cecilia Strappa,Anna Rita Larici,Thomas Frauenfelder,Lisa Jungblut
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/rli.0000000000001128
摘要

Objectives The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials. Methods One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read. In the second step, automated emphysema quantification was performed using an established LAV algorithm with a threshold of −950 HU and a commercially available deep learning model for automated emphysema quantification. Automated estimations of emphysema extent were converted and compared with visual scoring ratings. Results X-ray dose scans exhibited a significantly lower computed tomography dose index than low-dose scans (low-dose: 0.66 ± 0.16 mGy, x-ray dose: 0.11 ± 0.03 mGy, P < 0.001). Interreader agreement between low- and x-ray dose for visual emphysema scoring was excellent (κ = 0.83). Visual emphysema scoring consensus showed good agreement between low-dose and x-ray dose scans (κ = 0.70), with significant and strong correlation (Spearman ρ = 0.79). Although trace emphysema was underestimated in x-ray dose scans, there was no significant difference in the detection of higher-grade (mild to advanced destructive) emphysema ( P = 0.125) between the 2 scan doses. Although predicted emphysema volumes on x-ray dose scans for the LAV method showed strong and the deep learning model excellent significant correlations with predictions on low-dose scans, both methods significantly overestimated emphysema volumes on lower quality scans ( P < 0.001), with the deep learning model being more robust. Further, deep learning emphysema severity estimations showed higher agreement (κ = 0.65) and correlation (Spearman ρ = 0.64) with visual scoring for low-dose scans than LAV predictions (κ = 0.48, Spearman ρ = 0.45). Conclusions The severity of emphysema can be reliably estimated using visual scoring on CT scans performed with x-ray equivalent doses on a PCD-CT. A deep learning algorithm demonstrated good agreement and strong correlation with the visual scoring method on low-dose scans. However, both the deep learning and LAV algorithms overestimated emphysema extent on x-ray dose scans. Nonetheless, x-ray equivalent radiation dose scans may revolutionize the detection and monitoring of disease in chronic obstructive pulmonary disease patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
WEWE完成签到,获得积分10
1秒前
王一发布了新的文献求助10
2秒前
2秒前
嗯嗯发布了新的文献求助10
3秒前
3秒前
4秒前
321完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
7秒前
Ava应助阳光的映梦采纳,获得10
7秒前
as12完成签到,获得积分10
7秒前
雪魔完成签到,获得积分10
7秒前
8秒前
科目三应助嗯嗯采纳,获得10
8秒前
9秒前
9秒前
牛牛完成签到,获得积分10
10秒前
一夜暴富发布了新的文献求助10
10秒前
shaoshao86发布了新的文献求助10
10秒前
隐形曼青应助德瓦达达娃采纳,获得10
11秒前
SciGPT应助as12采纳,获得10
12秒前
12秒前
YY完成签到,获得积分10
12秒前
12秒前
WEAWEA发布了新的文献求助10
13秒前
13秒前
Orange应助朱冰蓝采纳,获得10
14秒前
混沌完成签到,获得积分10
15秒前
15秒前
星辰大海应助吕别皱眉啊采纳,获得10
15秒前
帅气老张发布了新的文献求助10
16秒前
Criminology34举报tzq求助涉嫌违规
16秒前
17秒前
烟酒僧完成签到,获得积分10
18秒前
嘻嘻发布了新的文献求助10
18秒前
fyd60610发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086950
求助须知:如何正确求助?哪些是违规求助? 4302449
关于积分的说明 13407812
捐赠科研通 4127673
什么是DOI,文献DOI怎么找? 2260458
邀请新用户注册赠送积分活动 1264691
关于科研通互助平台的介绍 1198859