Assessment of Emphysema on X-ray Equivalent Dose Photon-Counting Detector CT

医学 核医学 图像质量 放射科 肺气肿 射线照相术 人工智能 内科学 计算机科学 图像(数学)
作者
Bjarne Kerber,Falko Ensle,Jonas Kroschke,Cecilia Strappa,Anna Rita Larici,Thomas Frauenfelder,Lisa Jungblut
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/rli.0000000000001128
摘要

Objectives The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials. Methods One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read. In the second step, automated emphysema quantification was performed using an established LAV algorithm with a threshold of −950 HU and a commercially available deep learning model for automated emphysema quantification. Automated estimations of emphysema extent were converted and compared with visual scoring ratings. Results X-ray dose scans exhibited a significantly lower computed tomography dose index than low-dose scans (low-dose: 0.66 ± 0.16 mGy, x-ray dose: 0.11 ± 0.03 mGy, P < 0.001). Interreader agreement between low- and x-ray dose for visual emphysema scoring was excellent (κ = 0.83). Visual emphysema scoring consensus showed good agreement between low-dose and x-ray dose scans (κ = 0.70), with significant and strong correlation (Spearman ρ = 0.79). Although trace emphysema was underestimated in x-ray dose scans, there was no significant difference in the detection of higher-grade (mild to advanced destructive) emphysema ( P = 0.125) between the 2 scan doses. Although predicted emphysema volumes on x-ray dose scans for the LAV method showed strong and the deep learning model excellent significant correlations with predictions on low-dose scans, both methods significantly overestimated emphysema volumes on lower quality scans ( P < 0.001), with the deep learning model being more robust. Further, deep learning emphysema severity estimations showed higher agreement (κ = 0.65) and correlation (Spearman ρ = 0.64) with visual scoring for low-dose scans than LAV predictions (κ = 0.48, Spearman ρ = 0.45). Conclusions The severity of emphysema can be reliably estimated using visual scoring on CT scans performed with x-ray equivalent doses on a PCD-CT. A deep learning algorithm demonstrated good agreement and strong correlation with the visual scoring method on low-dose scans. However, both the deep learning and LAV algorithms overestimated emphysema extent on x-ray dose scans. Nonetheless, x-ray equivalent radiation dose scans may revolutionize the detection and monitoring of disease in chronic obstructive pulmonary disease patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
zong发布了新的文献求助10
刚刚
热心的十二完成签到 ,获得积分10
刚刚
Menand发布了新的文献求助10
2秒前
睡不着发布了新的文献求助100
2秒前
www发布了新的文献求助20
3秒前
mrli发布了新的文献求助10
6秒前
科研完成签到 ,获得积分10
6秒前
一木完成签到,获得积分10
12秒前
orixero应助zzz采纳,获得10
14秒前
爆米花应助聪明梦容采纳,获得10
14秒前
默默访风完成签到,获得积分10
15秒前
科研的牲口完成签到,获得积分10
16秒前
16秒前
阳佟天川完成签到,获得积分10
16秒前
taoatao发布了新的文献求助10
17秒前
17秒前
19秒前
dou发布了新的文献求助10
21秒前
amber完成签到,获得积分10
22秒前
单纯芹菜发布了新的文献求助10
23秒前
虚拟的飞凤完成签到,获得积分10
23秒前
小小发布了新的文献求助10
23秒前
amber发布了新的文献求助10
25秒前
脑洞疼应助liudun1982采纳,获得30
26秒前
CodeCraft应助小猪猪饲养员采纳,获得10
27秒前
duoduo完成签到,获得积分10
28秒前
Wilddeer完成签到 ,获得积分10
28秒前
脑洞疼应助睡不着采纳,获得100
28秒前
28秒前
taoatao完成签到,获得积分10
30秒前
chang完成签到,获得积分10
31秒前
Chenjl发布了新的文献求助10
31秒前
weishen应助sdss采纳,获得30
32秒前
勇哥哥完成签到,获得积分10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292305
求助须知:如何正确求助?哪些是违规求助? 2928610
关于积分的说明 8437932
捐赠科研通 2600684
什么是DOI,文献DOI怎么找? 1419210
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642906