Latent Diffusion Enhanced Rectangle Transformer for Hyperspectral Image Restoration

高光谱成像 人工智能 图像复原 计算机视觉 矩形 计算机科学 模式识别(心理学) 变压器 图像处理 图像(数学) 数学 工程类 电压 几何学 电气工程
作者
Miaoyu Li,Ying Fu,Tao Zhang,Ji Liu,Dejing Dou,Chenggang Yan,Yulun Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17
标识
DOI:10.1109/tpami.2024.3475249
摘要

The restoration of hyperspectral image (HSI) plays a pivotal role in subsequent hyperspectral image applications. Despite the remarkable capabilities of deep learning, current HSI restoration methods face challenges in effectively exploring the spatial non-local self-similarity and spectral low-rank property inherently embedded with HSIs. This paper addresses these challenges by introducing a latent diffusion enhanced rectangle Transformer for HSI restoration, tackling the non-local spatial similarity and HSI-specific latent diffusion low-rank property. In order to effectively capture non-local spatial similarity, we propose the multi-shape spatial rectangle self-attention module in both horizontal and vertical directions, enabling the model to utilize informative spatial regions for HSI restoration. Meanwhile, we propose a spectral latent diffusion enhancement module that generates the image-specific latent dictionary based on the content of HSI for low-rank vector extraction and representation. This module utilizes a diffusion model to generatively obtain representations of global low-rank vectors, thereby aligning more closely with the desired HSI. A series of comprehensive experiments were carried out on four common hyperspectral image restoration tasks, including HSI denoising, HSI super-resolution, HSI reconstruction, and HSI inpainting. The results of these experiments highlight the effectiveness of our proposed method, as demonstrated by improvements in both objective metrics and subjective visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ily.发布了新的文献求助10
刚刚
2秒前
聪慧元绿发布了新的文献求助20
2秒前
星海完成签到,获得积分10
2秒前
阿腾发布了新的文献求助10
2秒前
调皮钱钱完成签到,获得积分10
2秒前
3秒前
4秒前
kaka发布了新的文献求助10
5秒前
BO发布了新的文献求助10
5秒前
天天快乐应助cc6521采纳,获得10
6秒前
6秒前
CipherSage应助小小小肥鸡采纳,获得10
6秒前
Twilight发布了新的文献求助10
7秒前
7秒前
不晚完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
wanci应助单薄的千青采纳,获得30
10秒前
10秒前
小蘑菇应助橙汁采纳,获得10
10秒前
clover完成签到 ,获得积分10
11秒前
浅色西完成签到,获得积分10
11秒前
烟花应助维护采纳,获得10
12秒前
12秒前
herz完成签到 ,获得积分10
12秒前
Alphaz9918发布了新的文献求助10
13秒前
13秒前
田様应助江糖糖采纳,获得10
15秒前
15秒前
慕青应助唐静采纳,获得10
15秒前
Nat发布了新的文献求助10
16秒前
可爱慕卉发布了新的文献求助10
16秒前
快乐木木发布了新的文献求助10
16秒前
英吉利25发布了新的文献求助10
16秒前
17秒前
不晚发布了新的文献求助10
17秒前
www完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468778
求助须知:如何正确求助?哪些是违规求助? 4572121
关于积分的说明 14333712
捐赠科研通 4498948
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921